|
Reference Aich, P. and Dasgupta, D. (1990) Role of Mg++ in the mithramycin-DNA interaction: evidence for two types of mithramycin-Mg++ complex. Biochem Biophys Res Commun, 173, 689-696. Aich, P., Sen, R. and Dasgupta, D. (1992) Role of magnesium ion in the interaction between chromomycin A3 and DNA: binding of chromomycin A3-Mg2+ complexes with DNA. Biochemistry, 31, 2988-2997. Aivasashvilli, V.A. and Beabealashvilli, R.S. (1983) Sequence-specific inhibition of RNA elongation by actinomycin D. FEBS Lett, 160, 124-128. Beran, M., Semonsky, M. and Semonska, S. (1979) [Chemotherapy of invasive tumors. VI. Antibiotics]. Cesk Farm, 28, 411-420. Bianchi, N., Osti, F., Rutigliano, C., Corradini, F.G., Borsetti, E., Tomassetti, M., Mischiati, C., Feriotto, G. and Gambari, R. (1999) The DNA-binding drugs mithramycin and chromomycin are powerful inducers of erythroid differentiation of human K562 cells. Br J Haematol, 104, 258-265. Bowater, R.P. and Wells, R.D. (2001) The intrinsically unstable life of DNA triplet repeats associated with human hereditary disorders. Prog Nucleic Acid Res Mol Biol, 66, 159-202. Breuer, W., Epsztejn, S. and Cabantchik, Z.I. (1995a) Iron acquired from transferrin by K562 cells is delivered into a cytoplasmic pool of chelatable iron(II). J Biol Chem, 270, 24209-24215. Breuer, W., Epsztejn, S., Millgram, P. and Cabantchik, I.Z. (1995b) Transport of iron and other transition metals into cells as revealed by a fluorescent probe. Am J Physiol, 268, C1354-1361. Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T. and Warren, G.L. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr, 54 ( Pt 5), 905-921. Cabantchik, Z.I., Glickstein, H., Milgram, P. and Breuer, W. (1996) A fluorescence assay for assessing chelation of intracellular iron in a membrane model system and in mammalian cells. Anal Biochem, 233, 221-227. Caceres-Cortes, J., Sugiyama, H., Ikudome, K., Saito, I. and Wang, A.H. (1997) Interactions of deglycosylated cobalt(III)-pepleomycin (green form) with DNA based on NMR structural studies. Biochemistry, 36, 9995-10005. Chakrabarti, S., Bhattacharyya, D. and Dasgupta, D. (2000) Structural basis of DNA recognition by anticancer antibiotics, chromomycin A(3), and mithramycin: roles of minor groove width and ligand flexibility. Biopolymers, 56, 85-95. Chatterjee, S., Zaman, K., Ryu, H., Conforto, A. and Ratan, R.R. (2001) Sequence-selective DNA binding drugs mithramycin A and chromomycin A3 are potent inhibitors of neuronal apoptosis induced by oxidative stress and DNA damage in cortical neurons. Ann Neurol, 49, 345-354. Chen, F.M. (1988) Kinetic and equilibrium binding studies of actinomycin D with some d(TGCA)-containing dodecamers. Biochemistry, 27, 1843-1848. Chen, H., Liu, X. and Patel, D.J. (1996) DNA bending and unwinding associated with actinomycin D antibiotics bound to partially overlapping sites on DNA. J Mol Biol, 258, 457-479. Chou, S.H., Chin, K.H. and Chen, F.M. (2002) Looped out and perpendicular: deformation of Watson-Crick base pair associated with actinomycin D binding. Proc Natl Acad Sci U S A, 99, 6625-6630. Cons, B.M. and Fox, K.R. (1989) Interaction of mithramycin with metal ions and DNA. Biochem Biophys Res Commun, 160, 517-524. Dean, R.T. and Nicholson, P. (1994) The action of nine chelators on iron-dependent radical damage. Free Radic Res, 20, 83-101. Du Priest, R.W., Jr. and Fletcher, W.S. (1973) Chemotherapy of testicular germinal tumors. Oncology, 28, 147-163. Esposito, B.P., Epsztejn, S., Breuer, W. and Cabantchik, Z.I. (2002) A review of fluorescence methods for assessing labile iron in cells and biological fluids. Anal Biochem, 304, 1-18. Foley, J.F., Lemon, H.M., Miller, D.M. and Kessinger, A. (1972) The treatment of metastatic testicular tumors. J Urol, 108, 439-442. Fox, K.R. and Howarth, N.R. (1985) Investigations into the sequence-selective binding of mithramycin and related ligands to DNA. Nucleic Acids Res, 13, 8695-8714. Frederick, C.A., Williams, L.D., Ughetto, G., van der Marel, G.A., van Boom, J.H., Rich, A. and Wang, A.H. (1990) Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. Biochemistry, 29, 2538-2549. Gao, J. and Richardson, D.R. (2001) The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents, IV: The mechanisms involved in inhibiting cell-cycle progression. Blood, 98, 842-850. Gao, X.L., Mirau, P. and Patel, D.J. (1992) Structure refinement of the chromomycin dimer-DNA oligomer complex in solution. J Mol Biol, 223, 259-279. Gao, X.L. and Patel, D.J. (1989) Solution structure of the chromomycin-DNA complex. Biochemistry, 28, 751-762. Gao, X.L. and Patel, D.J. (1990) Chromomycin dimer-DNA oligomer complexes. Sequence selectivity and divalent cation specificity. Biochemistry, 29, 10940-10956. Gao, Y.G., Robinson, H., Sanishvili, R., Joachimiak, A. and Wang, A.H. (1999) Structure and recognition of sheared tandem G x A base pairs associated with human centromere DNA sequence at atomic resolution. Biochemistry, 38, 16452-16460. Gochin, M. (2000) A high-resolution structure of a DNA-chromomycin-Co(II) complex determined from pseudocontact shifts in nuclear magnetic resonance. Structure Fold Des, 8, 441-452. Goldberg, I.H. and Friedman, P.A. (1971) Antibiotics and nucleic acids. Annu Rev Biochem, 40, 775-810. Haq, I. (2002) Thermodynamics of drug-DNA interactions. Arch Biochem Biophys, 403, 1-15. Haq, I. and Ladbury, J. (2000) Drug-DNA recognition: energetics and implications for design. J Mol Recognit, 13, 188-197. Hermes-Lima, M., Nagy, E., Ponka, P. and Schulman, H.M. (1998) The iron chelator pyridoxal isonicotinoyl hydrazone (PIH) protects plasmid pUC-18 DNA against *OH-mediated strand breaks. Free Radic Biol Med, 25, 875-880. Hermes-Lima, M., Santos, N.C., Yan, J., Andrews, M., Schulman, H.M. and Ponka, P. (1999) EPR spin trapping and 2-deoxyribose degradation studies of the effect of pyridoxal isonicotinoyl hydrazone (PIH) on *OH formation by the Fenton reaction. Biochim Biophys Acta, 1426, 475-482. Hou, M.H., Lin, S.B., Yuann, J.M., Lin, W.C., Wang, A.H. and Kan Ls, L. (2001) Effects of polyamines on the thermal stability and formation kinetics of DNA duplexes with abnormal structure. Nucleic Acids Res, 29, 5121-5128. Hou, M.H., Robinson, H., Gao, Y.G. and Wang, A.H. (2002) Crystal structure of actinomycin D bound to the CTG triplet repeat sequences linked to neurological diseases. Nucleic Acids Res, 30, 4910-4917. Hurwitz, J., Furth, J.J., Malamy, M. and Alexander, M. (1962) The role of deoxyribonucleic acid in ribonucleic acid synthesis. III : The inhibition of the enzymatic synthsis of ribonucleic acid and deoxyribonucleic acid by actinomycin D and proflavin. Proc. Natl Acad. Sci. U.S.A., 48, 1222-1230. Itzhaki, L., Weinberger, S., Livnah, N. and Berman, E. (1990) A unique binding cavity for divalent cations in the DNA-metal-chromomycin A3 complex. Biopolymers, 29, 481-489. Jakupciak, J.P. and Wells, R.D. (1999) Genetic instabilities in (CTG.CAG) repeats occur by recombination. J Biol Chem, 274, 23468-23479. Kamitori, S. and Takusagawa, F. (1992) Crystal structure of the 2:1 complex between d(GAAGCTTC) and the anticancer drug actinomycin D. J Mol Biol, 225, 445-456. Katahira, R., Katahira, M., Yamashita, Y., Ogawa, H., Kyogoku, Y. and Yoshida, M. (1998) Solution structure of the novel antitumor drug UCH9 complexed with d(TTGGCCAA)2 as determined by NMR. Nucleic Acids Res, 26, 744-755. Keniry, M.A., Banville, D.L., Simmonds, P.M. and Shafer, R. (1993) Nuclear magnetic resonance comparison of the binding sites of mithramycin and chromomycin on the self-complementary oligonucleotide d(ACCCGGGT)2. Evidence that the saccharide chains have a role in sequence specificity. J Mol Biol, 231, 753-767. Kennedy, B.J. (1972) Mithramycin therapy in testicular cancer. J Urol, 107, 429-432. Kovtun, I.V. and McMurray, C.T. (2001) Trinucleotide expansion in haploid germ cells by gap repair. Nat Genet, 27, 407-411. Lavery, R. and Sklenar, H. (1988) The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J Biomol Struct Dyn, 6, 63-91. Lian, C., Robinson, H. and Wang, A.H.-J. (1996) Structure of actinomycin D bound with (GAAGCTTC)2 and (GATGCTTC)2 and its binding to the (CAG)n:(CTG)n triplet sequence as determined by NMR analysis. J.Am.Chem.Soc., 118, 8791-8801. Liu, C. and Chen, F.M. (1994) Oligonucleotide studies of sequence-specific binding of chromomycin A3 to DNA. Biochemistry, 33, 1419-1424. Liu, C. and Chen, F.M. (1996) Actinomycin D binds strongly and dissociates slowly at the dGpdC site with flanking T/T mismatches. Biochemistry, 35, 16346-16353. Lovejoy, D.B. and Richardson, D.R. (2002) Novel "hybrid" iron chelators derived from aroylhydrazones and thiosemicarbazones demonstrate selective antiproliferative activity against tumor cells. Blood, 100, 666-676. Margolis, R.L., O'Hearn, E., Rosenblatt, A., Willour, V., Holmes, S.E., Franz, M.L., Callahan, C., Hwang, H.S., Troncoso, J.C. and Ross, C.A. (2001) A disorder similar to Huntington's disease is associated with a novel CAG repeat expansion. Ann Neurol, 50, 373-380. McMurray, C.T. (1999) DNA secondary structure: a common and causative factor for expansion in human disease. Proc Natl Acad Sci U S A, 96, 1823-1825. Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol., 276, 307-326. Parkinson, G., Vojtechovsky, J., Clowney, L., Brunger, A.T. and Berman, H.M. (1996) New parameters for the refinement of nucleic acid containing structures. Acta Crystallogr., D52, 57-64. Paulson, H.L. and Fischbeck, K.H. (1996) Trinucleotide repeats in neurogenetic disorders. Annu Rev Neurosci, 19, 79-107. Petruska, J., Arnheim, N. and Goodman, M.F. (1996) Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases. Nucleic Acids Res, 24, 1992-1998. Petruska, J., Hartenstine, M.J. and Goodman, M.F. (1998) Analysis of strand slippage in DNA polymerase expansions of CAG/CTG triplet repeats associated with neurodegenerative disease. J Biol Chem, 273, 5204-5210. Pluciennik, A., Iyer, R.R., Parniewski, P. and Wells, R.D. (2000) Tandem duplication. A novel type of triplet repeat instability. J Biol Chem, 275, 28386-28397. Robinson, H., Gao, Y.G., McCrary, B.S., Edmondson, S.P., Shriver, J.W. and Wang, A.H. (1998) The hyperthermophile chromosomal protein Sac7d sharply kinks DNA. Nature, 392, 202-205. Robinson, H., Gao, Y.G., Yang, X., Sanishvili, R., Joachimiak, A. and Wang, A.H. (2001) Crystallographic analysis of a novel complex of actinomycin D bound to the DNA decamer CGATCGATCG. Biochemistry, 40, 5587-5592. Sastry, M., Fiala, R. and Patel, D.J. (1995) Solution structure of mithramycin dimers bound to partially overlapping sites on DNA. J Mol Biol, 251, 674-689. Sastry, M. and Patel, D.J. (1993) Solution structure of the mithramycin dimer-DNA complex. Biochemistry, 32, 6588-6604. Seznec, H., Agbulut, O., Sergeant, N., Savouret, C., Ghestem, A., Tabti, N., Willer, J.C., Ourth, L., Duros, C., Brisson, E., Fouquet, C., Butler-Browne, G., Delacourte, A., Junien, C. and Gourdon, G. (2001) Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities. Hum Mol Genet, 10, 2717-2726. Singh, S. and Hider, R.C. (1988) Colorimetric detection of the hydroxyl radical: comparison of the hydroxyl-radical-generating ability of various iron complexes. Anal Biochem, 171, 47-54. Slavik, M. and Carter, S.K. (1975) Chromomycin A3, mithramycin, and olivomycin: antitumor antibiotics of related structure. Adv Pharmacol Chemother, 12, 1-30. Smith, A.D. (1997) Oxford dictionary of biochemistry and molecular biology. Oxford University Press, Oxford ; New York. Sobell, H.M. and Jain, S.C. (1972) Stereochemistry of actinomycin binding to DNA. II. Detailed molecular model of actinomycin-DNA complex and its implications. J Mol Biol, 68, 21-34. Terwilliger, T.C. and Berendzen, J. (1999) Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr, 55 ( Pt 4), 849-861. Torti, S.V., Torti, F.M., Whitman, S.P., Brechbiel, M.W., Park, G. and Planalp, R.P. (1998) Tumor cell cytotoxicity of a novel metal chelator. Blood, 92, 1384-1389. Walsh, M.A., Evans, G., Sanishvili, R., Dementieva, I. and Joachimiak, A. (1999) MAD data collection - current trends. Acta Crystallogr D Biol Crystallogr, 55 ( Pt 10), 1726-1732. Wang, A.H.-J. and Gao, Y.G. (1990) Crystallization of oligonucleotides and their complexes with antitumor drugs. Methods, 1, 91-99. Ward, D.C., Reich, E. and Goldberg, I.H. (1965) Base specificity in the interaction of polynucleotides with antibiotic drugs. Science, 149, 1259-1263. Warren, S.T. and Ashley, C.T., Jr. (1995) Triplet repeat expansion mutations: the example of fragile X syndrome. Annu Rev Neurosci, 18, 77-99. Watson, J.D. and Crick, F.H. (1974) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. J.D. Watson and F.H.C. Crick. Published in Nature, number 4356 April 25, 1953. Nature, 248, 765. Weinberger, S., Shafer, R. and Berman, E. (1988) On the interaction of chromomycin A3 with calf thymus DNA in the presence of metal cations at different pH values. Biopolymers, 27, 831-842. Yang, X.L. and Wang, A.H.-J. (1999) Structural studies of atom-specific anticancer drugs acting on DNA. Pharmacol Ther, 83, 181-215. Yarbro, J.W., Kennedy, B.J. and Barnum, C.P. (1966) Mithramycin inhibition of ribonucleic acid synthesis. Cancer Res, 26, 36-39.
|