(35.173.234.237) 您好!臺灣時間:2019/08/24 23:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:黃惠纓
研究生(外文):Hui-Ying Huang
論文名稱:梅精之化學組成及製程中化學變化之研究
論文名稱(外文):Studies on the Chemical Constituents of Mei (Prunus mume Sieb. et Zucc.) Extract and the Chemical Changes during Concentration Process from Mei Fruit Juice to Mei extract.
指導教授:許明仁許明仁引用關係陳建志陳建志引用關係
指導教授(外文):Ming-Jen SheuChien-Chih Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:128
中文關鍵詞:梅精預濃縮青梅汁
外文關鍵詞:mei extractsemi-concentrated fruit juiceneochlorogenic acidcryptochlorogenic acidchlorogenic acidHMFcitric acidmalic acid
相關次數:
  • 被引用被引用:7
  • 點閱點閱:9854
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
市售預濃縮青梅汁(17.8 oBrix)於90℃加熱再濃縮三倍所製得之梅精以冷凍乾燥除去水分後,以95%乙醇萃取之萃取液經分離與鑑定,共得10種化合物,分別為p-coumaric acid、benzoic acid、5-hydroxymethyl-2-furaldehyde (HMF)、citric acid、benzyl β-glucopyranoside、chlorogenic acid methyl ester、chlorogenic acid ethyl ester、neochlorogenic acid ethyl ester、cryptochlorogenic acid methyl ester及cryptochlorogenic ethyl ester,其中五種chlorogenic acid衍生物均具有與Trolox®近似之清除DPPH自由基能力, IC50介於18.74~22.87 μM間。
四種不同品種(大青、胭脂、軟枝、野生)之青梅以相同製備條件製得之樣品以HPLC 分析,其層析圖譜極為相似,顯示樣品間之成分差異不大。
以90℃加熱濃縮之大青梅汁,neochlorogenic acid之含量隨濃度升高而逐漸下降,濃縮八到十倍的過程中下降幅度最大,chlorogenic acid無顯著變化,cryptochlorogenic acid含量則隨濃度之提高而微幅上升。大青梅汁中之neochlorogenic acid、chlorogenic acid及cryptochlorogenic acid之含量分別為0.54、0.09、<0.026 mg/g;十倍濃縮之大青梅精中,則分別含有2.36、0.72、1.02 mg/g;而八倍濃縮之梅精中,三者之總含量可高達4.60 mg/g。
HMF在新鮮青梅汁中並不存在,濃縮八倍至十倍之過程中,梅汁中HMF之含量大幅上升;十倍濃縮之梅精中,HMF含量高達3.47 mg/g。
Citric acid 與malic acid為梅子果實中含量最多的有機酸,分別為50.35及13.08 mg/g,加熱濃縮過程中此二化合物幾無變化,性質穩定;十倍濃縮之梅精中,citric acid 與malic acid之含量可高達456.02及109.42 mg/g。
以90℃迴流加熱青梅汁五個小時,其中neochlorogenic acid、cryptochlorogenic acid及HMF之變化幅度均小於以90℃濃縮五小時之青梅汁。此結果顯示出,梅精以90℃濃縮之過程中,濃縮效應應是影響成分變化幅度較鉅的主要因子。
濃縮程度介於一倍至二倍之梅汁濃縮物,其清除DPPH自由基之能力無明顯差異;然而二至十倍之濃縮物,其清除效率隨濃縮倍數顯著上升。

Ten compounds, p-coumaric acid, benzoic acid, citric acid, 5-hydroxymethyl-2-furaldehyde (HMF), benzyl β-glucopyranoside, chlorogenic acid methyl ester, chlorogenic acid ethyl ester, neochlorogenic acid ethyl ester, cryptochlorogenic acid methyl ester, and cryptochlorogenic acid ethyl ester, were isolated from the ethanol extract of the mei extract from semi-concentrated fruit juice in this study. These five chlorogenic acid derivatives from the mei extract have good efficiencies in the scavenging DPPH free radical with the IC50 values between 18.72 and 22.87 μM.
Four fruit juices made from the different mei cultivars, Da-Ching, Yen-Chih, Roan-Ji, and Ye-Sheng, showed similar HPLC profiles. It means the differences of chemical constitutions between the four cultivars are limited.
During the concentration process at 90℃, the content of neochlorogenic acid decreased, especially in 8- to 10-fold mei extracts. The content of chlorogenic acid were almost the same and the content of cryptochlorogenic acid rose gently. The content of neochlorogenic acid, chlorogenic acid and cryptochlorogenic acid were 0.54, 0.09, and<0.026mg/g in fresh fruit juice, and 2.36, 0.72, and 1.02mg/g in 10-fold mei extract, respectively. The total contents of these three compounds were 4.60 mg/g in 8-fold mei extract.
HMF was not detected in fresh mei fruit juice. During the 8- to 10-fold process, the content of HMF rose substantially. In 10-fold mei extract, the content of HMF was 3.47 mg/g.
Citric acid and malic acid were the most abundant organic acids in the mei fruit juice; the contents were 50.35 and 13.08 mg/g, respectively, and did not change during the 90℃ concentration process. This result showed that the chemical properties of these two compounds were very stable. The contents of citric acid and malic acid were 456.02 and 104.92 mg/g in 10-fold mei extract, respectively.
The changes of the contents of neochlorogenic acid, cryptochlorogenic acid and HMF in mei fruit juice during refluxing process at 90℃ were smaller than concentration process at 90℃. It means the juice concentration was the most important factor that affect the changes of these compounds during the 90℃ concentration process.
The DPPH free radical scavenging efficiencies of mei extract between 1-fold to 4-fold were not different but were obviously higher in 8-fold and 10-fold mei extract.

中文摘要……………………………………………………………….…I
英文摘要………………………………………………………………..III
目錄…………………………………………………………………...…V
圖目錄……………………………………………………………….…VII
表目錄…………………………………………………………………..IX
附圖目錄…………………………………………………………...……X
壹、前言……………………………………………………………..……1
貳、文獻整理…………………………………………………………..…2
一、梅之成分及其保健功效…………………………………………2
( 一 ) 梅子果實之成分…………..…….………………………2
( 甲 ) 一般成分……………………..………………………2
( 乙 ) 杏仁(Amygdalin)………………………………2
( 丙 ) 酚類化合物…………………..………………………4
( 丁 ) 其他成分……………………..………………………4
( 二 ) 梅之保健功效…………………...………………………7
( 甲 )中醫功效(中華本草)………………………………7
( 乙 ) 其他藥理及保健功效之研究………………………..7
二、梅精………………………………………………..…………….10
( 一 ) 梅精之介紹及製作流程……………………………….10
( 二 ) 梅汁於加熱濃縮中成分之變化………………………10
( 甲 ) 糖類變化……………………………………………10
( 乙 ) 胺基酸變化…………………………………………12
( 丙 )有機酸變化………………………………………..…12
( 丁 )杏仁之降解情形…………………………………..12
( 三 )梅精之保健功效………………………………..……16
參、材料與方法………………………………………….……...………18
一、 原料……………………………………………………………18
二、 儀器設備………………………………………………………18
三、 層析材料………………………………………………………19
四、 藥品……………………………………………………………19
五、 實驗方法………………………………………………………20
(一) 實驗設計………………………………………………20
(二) 梅精成分之分離………………………………………20
(三) 梅精成分之鑑定………………………………………22
(四) 青梅汁與梅精成分之比較……………………………23
(五) 青梅汁中所含neochlorogenic acid (mei-1)之分離純化與鑑定…………………………………….… ………26
(六) chlorogenic acid異構物之製備與鑑定………………26
(七) 青梅汁加熱濃縮過程中,成分變化之分析.…………28
(八) DPPH自由基清除能力分析………………………….34
肆、結果與討論…………………………………….…………………...38
一、 梅精及青梅汁中主要成分之分析與鑑定…………………….38
二、 不同品種青梅汁與梅精成分之比較………………………….61
三、 市售預濃縮青梅汁及其梅精與大青梅汁及其梅精主要成分之比較………………………………….…………………………64
四、 主要成分變化之分析……………….…………………………67
五、 迴流加熱過程中,青梅汁中chlorogenic acid類化合物及HMF之變化……………………………….…………………………80
六、 清除DPPH自由基能力試驗……………………………….…83
伍、結論………………………………………………………….….…89
陸、參考文獻…………………………………………………………..90
圖目錄
圖一、杏仁之結構式…………………………………………………3
圖二、由梅子果實所分離出之化合物…………………………………5
圖三、梅精製造過程中杏仁、苯甲醛、苯甲酸及氰酸之含量變化…………………………………………………………….…14
圖四、mumefural之結構……………………………………………..…17
圖五、梅精成分分離流程圖……………………………………………21
圖六、青梅汁製備流程圖………………………………………………24
圖七、以青梅汁製備梅精流程圖………………………………………25
圖八、青梅汁中neochorogenic acid之萃取流程………………………27
圖九、chlorogenic acid異構物之製備與分離…………………………29
圖十、不同濃縮程度青梅汁之製備……………………………………30
圖十一、不同濃縮程度青梅汁中主要成分之定量……………………35
圖十二、自梅精中所分離得到之化合物………………………………39
圖十三、以製備型HPLC管柱分離梅精中五種chlorogenic acid類化合物…………………………………………………………..40
圖十四、青梅汁HPLC層析圖與鑑定出之chlorogenic acid類化合物……………………………………………………………41
圖十五、以chlorogenic acid合成neochlorogenic acid與cryptochlorogenic acid後之HPLC層析圖……………….………………………………………….42
圖十六、四種不同品種青梅果汁之HPLC層析圖……………………62
圖十七、四種不同品種梅精之HPLC層析圖…………………………63
圖十八、市售預濃縮青梅汁與大青梅汁之HPLC層析圖譜…………65
圖十九、由市售預濃縮青梅汁與大青梅汁製得梅精之HPLC層析圖譜……………………………………………………………66
圖二十、不同濃縮倍數之梅精加水還原成梅汁之濃度後,以HPLC分析之層析圖譜 (330nm)…...…………………………………70
圖二十一、不同濃縮倍數之梅精稀釋還原成梅汁後,chlorogenic acid類化合物含量之變化….………………………………….71
圖二十二、不同濃縮程度之梅精中chlorogenic acid類化合物
之含量…………………………….………………………73
圖二十三、不同濃縮倍數之梅精加水還原成梅汁濃度後,以HPLC分析之層析圖譜(254nm)………………………………...75
圖二十四、不同濃縮倍數之梅精稀還原成梅汁後,HMF含量之變化…………………………………………………………76
圖二十五、不同濃縮程度之梅精中HMF之含量……………………77
圖二十六、不同濃縮倍數之梅精稀釋還原成梅汁後,citric acid及malic acid含量之變化………..…………………………………78
圖二十七、不同濃縮程度之梅精中citric acid及malic acid之含量…………………………………………………………80
圖二十八、以90℃加熱濃縮青梅汁,加熱時間與濃縮倍率
之關係……………………………………………………82
圖二十九、chlorogenic acid類化合物清除DPPH自由基速率之比較…………………………………………………………..86
表目錄
表一、梅子果肉於加工過程中,葉綠素及類胡蘿蔔素等之變化………6
表二、新鮮梅汁與梅精中游離胺基酸與糖及糖醇之含量……………11
表三、梅精中蘋果酸與檸檬酸之含量與莫耳比率…………………13
表四、青梅汁濃縮至體積比之二十分之一時苯甲酸及苯甲醛之含…15
表五、mei-1 之NMR 分析數據…… ………………………………45
表六、mei-3 之NMR 分析數據………………………………………47
表七、化合物6 之NMR 分析數據……………………………………49
表八、化合物7 之NMR 分析數據……………………………………51
表九、化合物8 之NMR 分析數據……………………………………53
表十、化合物9 之NMR 分析數據……………………………………55
表十一、化合物10 之NMR 分析數據………………………………..57
表十二、化合物1 之NMR 分析數據………………………………..59
表十三、化合物2 之NMR 分析數據………………………………..59
表十四、化合物4 之NMR 分析數據………………………………..59
表十五、化合物5 之NMR 分析數據………………………………..60
表十六、chlorogenic acid類化合物、HMF、citric acid及malic acid之檢量線………………………..………………………………68
表十七、chlorogenic acid類化合物、HMF、citric acid及malic acid之同日間與異日間HPLC分析值之相對標準偏差………69
表十八、青梅汁以90℃迴流加熱五小時過程中chlorogenic acid類化合物與HMF之變化情形…………………………………81
表十九、chlorogenic acid類化合物清除DPPH自由基之能力…………………………………………………………..84
表二十、不同濃倍數之梅精清除DPPH自由基能力之比較…………………………………………………………87
附圖目錄
附圖一、1H-NMR spectrum of mei-1…………………………………96
附圖二、13C-NMR spectrum of mei-1…………………………………96
附圖三、DEPT spectrum of mei-1…………………………………97
附圖四、1H-1H COSY spectrum of mei-1…………………………97
附圖五、HMQC spectrum of mei-1…………………………………98
附圖六、HMBC spectrum of mei-1…………………………………98
附圖七、IR spectrum of mei-1………………………………………99
附圖八、MS spectrum of mei-1………………………………………99
附圖九、1H-NMR spectrum of mei-3…………………………………100
附圖十、13C-NMR spectrum of mei-3………………………………100
附圖十一、DEPT spectrum of mei-3…………………………………101
附圖十二、1H-1H COSY spectrum of mei-3…………………………101
附圖十三、HMQC spectrum of mei-3…………………………………102
附圖十四、HMBC spectrum of mei-3………………………………102
附圖十五、IR spectrum of mei-3……………………………………103
附圖十六、MS spectrum of mei-3……………………………………103
附圖十七、1H-NMR spectrum of Compound 6………………………104
附圖十八、13C-NMR spectrum of Compound 6……………………104
附圖十九、DEPT spectrum of Compound 6………………………105
附圖二十、HMQC spectrum of Compound 6…………………………105
附圖二十一、HMBC spectrum of Compound 6………………………106
附圖二十二、IR spectrum of Compound 6………………………106
附圖二十三、MS spectrum of Compound 6…………………………107
附圖二十四、1H-NMR spectrum of Compound 7……………………107
附圖二十五、13C-NMR spectrum of Compound 7…………………108
附圖二十六、DEPT spectrum of Compound 7………………………108
附圖二十七、HMQC spectrum of Compound 7………………………109
附圖二十八、HMBC spectrum of Compound 7………………………109
附圖二十九、IR spectrum of Compound 7…………………………110
附圖三十、MS spectrum of Compound 7……………………………110
附圖三十一、1H-NMR spectrum of Compound 8……………………111
附圖三十二、13C-NMR spectrum of Compound 8…………………111
附圖三十三、DEPT spectrum of Compound 8……………………112
附圖三十四、1H-1H COSY spectrum of Compound 8………………112
附圖三十五、HMQC spectrum of Compound 8……………………113
附圖三十六、HMBC spectrum of Compound 8……………………113
附圖三十七、IR spectrum of Compound 8…………………………114
附圖三十八、MS spectrum of Compound 8………………………114
附圖三十九、1H-NMR spectrum of Compound 9……………………115
附圖四十、13C-NMR spectrum of Compound 9……………………115
附圖四十一、DEPT spectrum of Compound 9……………………116
附圖四十二、HMQC spectrum of Compound 9……………………116
附圖四十三、HMBC spectrum of Compound 9……………………117
附圖四十四、IR spectrum of Compound 9…………………………117
附圖四十五、MS spectrum of Compound 9………………………118
附圖四十六、1H-NMR spectrum of Compound 10…………………118
附圖四十七、13C-NMR spectrum of Compound 10…………………119
附圖四十八、DEPT spectrum of Compound 10……………………119
附圖四十九、HMQC spectrum of Compound 10……………………120
附圖五十、HMBC spectrum of Compound 10………………………120
附圖五十一、IR spectrum of Compound 10………………………121
附圖五十二、MS spectrum of Compound 10………………………121
附圖五十三、1H-NMR spectrum of Compound 1……………………122
附圖五十四、13C-NMR spectrum of Compound 1…………………122
附圖五十五、MS spectrum of Compound 1…………………………123
附圖五十六、1H-NMR spectrum of Compound 2……………………123
附圖五十七、MS spectrum of Compound 1…………………………124
附圖五十八、1H-NMR spectrum of Compound 4……………………124
附圖五十九、13C-NMR spectrum of Compound 4…………………125
附圖六十、HMQC spectrum of Compound 4………………………125
附圖六十一、HMBC spectrum of Compound 4……………………126
附圖六十二、MS spectrum of Compound 4…………………………126
附圖六十三、1H-NMR spectrum of Compound 5……………………127
附圖六十四、13CNMR spectrum of Compound 5……………………127
附圖六十五、DEPT spectrum of Compound 5……………………128
附圖六十六、1H- 1H COSY spectrum of Compound 5………………128

中華本草 第四冊第十卷 1999 上海科學技術出版社 p.86-93
方祖達,李玉弘 1991 台灣不同梅子栽培種特性之調查 中華農學會報 156: 69-82
方祖達、趙昭惠 1994 梅子果汁成分類型分佈之研究 食品科學21(1):34-45
方素嫣 2000 梅子種源之快速鑑別與在加工上之利用 台大園藝學研究所碩士論文
沈紅梅,易楊華,喬傳卓,蘇中武,李承祜 1995 烏梅的化學成分研究 中草葯 26(2):105-106
沈紅梅,喬傳卓,蘇中武,李承祜 1994 採收、加工、植物基原對烏梅抑菌作用的影響 中葯材 17(8):24
沈紅梅,程濤,喬傳卓,蘇中武,李承祜 1995 烏梅的體外抗腫瘤活性及免疫調節作用初探 中國中葯雜誌 20(6):365-368
柏有成 1989 梅子核仁中b-glucosidase之純化與生化性質之探討 台大園藝學研究所碩士論文
洪碧蓮 1994 青梅汁超過濾澄清及風味熟成之研究 輔大食品營養學研究所碩士論文
張正明 1984 梅子醃漬前果汁之製取及脫除苦味方法之研究 台大食科所論文
溫紹功、方祖達、許明仁 1992 梅汁加工之研究V.蒸發濃縮對梅汁品質之影響 食品科學 19(2):177-187
魏邦朱 2000 營養、保健、好味道的神奇果實-梅子 172:49-54
Anese M., Manzocco L., Nicoli M. C. and Lerici C. R. 1999. Antioxidant properties of tomato juice as affected by heating. J. Sci. Food Agric. 79:750-754.
Blois M. S. 1958. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 181:1199-1200.
Choi S.Y., Chung M.J. and Sung N.J. 2002. Volatile N-nitrosamine inhibition after intake Korean green tea and Maesil (Prunus mume SIEB. et ZACC.) extracts with an amine-rich diet in subjects ingesting nitrate. Food. Chem. Toxicol. 40(7):949-57.
Chuda Y., Ono H., Ohnishi-Kameyama M., Matsumoto K., Nagata T. and Kikuchi Y. 1999. Mumefural, citric acid derivative improving blood fluidity from fruit-juice concentrate of Japanese apricot (Prunus mume Sieb. et Zucc). J. Agric. Food Chem. 47(3):828-31.
Coen M., Engel R. and Nahrstedt A. 1995. Chavicol b-D-Glucoside, A Phenylpropanoid heteroside, Benzyl-b-Glucoside and Glycosidically Bound Volatiles from Subspecies of Cedornella Canariensis. Phytochemistry. 40(1): 149-155.
Deyama T., Ikawa T., Kitagawa S. and Nishibe S. 1987. The Constituents of Eucommia ulmoides OLIV. V. Isolation of Dihydroxydehydrodiconiferyl Alcohol Isomers and Phenolic Compounds. Chem. Pharm. Bull. 35(5): 1785-1789.
Ding C. K., Chachin K., Ueda Y., Imahori Y. and Wang C. Y. Metabolism of phenolic compounds during loquat fruit development. 2001 J. Agric. Food Chem. 49(6):2883-8
Dogasaki C., Murakami H., Nishijima M., Ohno N., Yadomae T. and Miyazaki T. 1994. Biological activity and structural characterization of alkaline-soluble polysaccharides from the kernels of Prunus mume Sieb. et Zacc. Biol. Pharm. Bull. 17(3):386-90.
Dogasaki C., Murakami H., Nishijima M., Yamamoto K. and Miyazaki T. 1992 Antimutagenic activities of hexane extracts of the fruit extract and the kernels of Prunus mume Sieb. et Zucc. Yakugaku Zasshi 112(8):577-84.
Fang N., Yu S. and Prior R. L. 2002. LC/MS/MS Characterization of Phenolic Constituents in Dried Plums. J. Agric. Food. Chem. 50:3579-3585.
Friedman M. and Jurgens H. S. 2000. Effect of pH on the Stability of Plant Phenolic Compounds. J. Agric. Chem. 48:2101-2110.
Hatanaka H. and Kaneda Y. 1985. Food hygienic investigation on Japanese apricot extract. Shokuhin eiseigaku zasshi 26(4):350-356.
Huang W. S., Lin C.C., Huang M. C. and Wen K. C. 2002. Determination of α-Hydroxyacids in Cosmetics. J. Food Drug Analysis 10(2):95-100.
Huang, T. C. 1986 Pigment composition and color changes during processing of mei ( plum ) . In : Role of chemistry in the quality of processed food. Food and Nutrition Press, Inc., Westport, U.S.A. p. 108 ~ 111.
Ichikawa K., Kinoshita T. and Sankawa U. 1989. The screening of Chinese crude drugs for Ca2+ antagonist activity: identification of active principles from the aerial part of Pogostemon cablin and the fruits of Prunus mume. Chem. Pharm. Bull. (Tokyo). 37(2):345-8.
Ina H., Yamada K. and Miyazaki T. 1999. Isolation of Benzyl Glucoside and chlorogenic acids from the fruits of Prunus mume. Nat. Med. (Tokyo) 53(2):109.
Ko F. N., Chu C. C., Lin C. N., Chang C. C. and Teng C. M. 1998. Isoorientin-6”-O-glucoside, a water-soluble antioxicant isolated from Gentiana arisanensis. Biochimica et Biophysica Acta 1389:81-90.
Kweon M. H., Hwang H. J. and Sung H. C. 2001. Identification and Antioxidant Activity of Novel Chlorogenic Acid Derivatives from Bamboo (Phyllostachys edulis). J. Agric. Food. Chem. 49: 4646-4655.
Lin Y. L. and Wang W. Y. 2002. Chemical Constituents of Vernonia patula. Chin. Pharm. J. 54(3):187-192.
Ly T. N., Yamauchi R., Shimotamada M. and Kato K. 2002. Isolation and Sturctural Elucidation of Some Glycosides from the Rhizomes of Smaller Galanga (Alpinia officinarum Hance). J. Agric. Food. Chem. 50: 4919-4924.
Machida K. and Kikuchi M. 1992. Phenolic Compounds from viburnum dilatatum. Phytochemistry. 31(10): 3654-3656.
McMurry, John. 1988. Organic Chemistry 2nd. p.749-751.
Mensor L. L., Menezes F. S., Leitao G. G., Reis A. S., Santos T. C., Coube C. S. and Leitao S. G. 2001. Screening of Brazilian Plant Extracts for Antioxicant Activity by the Use of DPPH Free Radical Method. Phytother. Res. 15:127-130.
Miyase T., Ueno A., Takizawa N., Kobayashi H. and Karasawa H. 1987. Studies on the Glycosides of Eimedium grandiflorum MORR. var. thunbergianum (MIQ.) NAKAI. I. Chem. Pharm. Bull. 35(3): 1109-1117.
Mőller B. and Herrmann K. 1983. Quinic Acid Esters of Hydroxycinnamic Acids in Pome Fruit. Phytochemistry 22(2): 477-481.
Nagels L., Dongen W. V., Brucker J. DE. and Pooter H DE. 1980. High-Performance liquid chromatographic separation of naturally occurring esters of phenolic acids. J. Chromatography 187:181-187.
Nakamura A. 1995. Organic acids, free amino acids and sugars compositions in ume (Prunus mume) extract, and change of their component during preparation process of ume extract. Nippon Eiyo Shokuryo Gakkaish. 48(3):232-235.
Nakatani N., Kayano S., Kikuzaki H., Sumino K., Katagiri K. and Mitani Takahiko. 2000. Identification, Quantitative Determination, and Antioxidative Activities of Chlorogenic Acid Isomers in Prune (Prunus domestica L.) J. Agric. Food. Chem. 48: 5512-5516.
Navarro M. C., Montilla M. P., Martin A., Jimenez J. and Utrilla M. P. 1993. Free Radical Scavenger and Antihepatotxic Activity of Rosmarinus tomentosus. Planta Med. 59:312-314.
Nicoli M. C., Anese M. and Parpinel M. 1999. Influence of processing on the antioxidant properties of fruit and vegetables. Trends in Food Science and Technologies 10:94-100.
Nicoli M. C., Anese M., Parpinel M. T., Franceschi S. and Lerici C. R. 1997. Loss and/or formation of antioxidants during food processing and storage. Cancer Letters 114:71-74.
Rada-Mendoza M., Olano A. and Villamiel M. 2002. Determination of hydroxymethylfurfural in commercial jams and in furit-based infant foods. Food Chemistry 79:513-516.
Rumbero-Sanchez A. and Vazquez P. 1991. Quinic Acid Esters from Isertis Haenkeana. Phytochemistry 30(1): 311-313.
Takeoka G. R. and Dao L. T. 2003 Antioxidant constituents of almond [Prunus dulcis (Mill.) D.A. Webb] hulls. J. Agric. Food Chem. 15;51(2):496-501
Terada H. and Yamamoto K. 1992a. Simultaneous determination of cyanogenic glycosides, benzaldehyde and benzoic acid in processed Japanese apricot by high performance liquid chromatography. Shokuhin Eiseigaku Zasshi 33(2):183-188.
Terada H. and Yamamoto K. 1992b. Contents of cyanogenic glycosides and their degradation products in processed Japanese Apricot. Shokuhin Eiseigaku Zasshi 33(2):189-195.
Tsai C. H., Stern A., Chiou J. F., Chern C. L. and Liu T. Z. 2001. Rapid and specific detection of hydroxyl radical using an ultraweak chemiluminescence analyzer and a low-level chemiluminescence emitter : application to hydroxyl radical-scavenging ability of aqueous extracts of Food constituents. J. Agric. Food Chem. 49(5):2137-41.
Utsunomiya H., Takekoshi S., Gato N., Utatsu H., Motley E. D., Eguchi K., Fitzgerald T. G., Mifune M., Frank G. D. and Eguchi S. 2002. Fruit-juice concentrate of Asian plum inhibits growth signals of vascular smooth muscle cells induced by angiotensin II. Life Sci. 72(6):659-67.
Wang H., Nair M. G., Strasburg G. M., Booren A. M. and Gray J. I. 1999. Novel Antioxidant Compounds from Tart Cherries (Prunus cerasus). J. Nat. Prod. 62: 86-88.
Yokozawa T., Chen C. P. and Liu W. Z. 1998. Effect of Traditional Chinese Prescriptions and Their Main Crude Drugs on 1,1-Diphenyl-2-picrylhydrazyl Radical. 12:94-97.
Yoshikawa M., Murakami T., Ishiwada T., Morikawa T., Kagawa M., Higashi Y. and Matsuda H. 2002. New flavonol oligoglycosides and polyacylated sucroses with inhibitory effects on aldose reductase and platelet aggregation from the flowers of Prunus mume. J. Nat. Prod. 65(8):1151-5.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔