跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/15 01:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李定寰
研究生(外文):Lee , Ting-Huan
論文名稱:電容性微機電超音波換能器之完整等效電路與設計
論文名稱(外文):Design and complete equivalent circuits of capacitive Micromachined Ultrasonic Transducer
指導教授:曹建和
指導教授(外文):Tsao , Jenho
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:80
中文關鍵詞:超音波微機電
外文關鍵詞:cMUTultrasoundmicromachined
相關次數:
  • 被引用被引用:3
  • 點閱點閱:457
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電容性微機電超音波換能器(cMUT)為目前最新的探頭發展技術,其本身體積小且低成本,可以整合至單一晶片中,因此降低電路寄生電容,並可有效提升訊雜比,另外在空氣中其效率亦較PZT高,對於流體的負載,也有較好的匹配程度與頻寬。
  由於cMUT為一個機電換能器,機械震動行為與機電轉換部分皆很複雜,不容易立即分析其特性。為了能快速精確的分析cMUT 元件, 需發展其等效電路模型 ,以做機電整合性的分析 。本研究由分析cMUT薄膜震動行為,計算出其機械性阻抗,並考慮直流偏壓的效應,推導出cMUT之完整等效電路,並輔以實際數據驗證,探討元件薄膜厚度、半徑與偏壓大小,對共振頻率與頻寬所造成的影響,進而訂定一設計流程,提供簡單且精確的方法,用以分析與設計cMUT。
In recent years, capacitive Micromachined Ultrasonic Transducer (cMUT) has been the object of extensive research in ultrasonic system. The volume of the transducer is small, and the cost is low. It can be integrated completely into a single chip. Thus both the parasitic capacitances and noise level are reduced significantly. It generates ultrasound in air more efficiently than piezoelectric transducers do because of its low mass. Moreover, the transducers match well with fluid loads which results in better bandwidth and efficiency.
Because the behavior of membrane vibration and transformation between electricity with machinery are complex, it’s not easy to analyze the characteristic immediately. In order to analyze the behavior of cMUT quickly and precisely , the model of equivalent circuit has to be deduced .Here , we analyze the behavior of the membrane vibration first, and then the partial differential equation consisting the physical phenomenon is derived. After that, the analytic solution of it and the mechanical impedance are also obtained in our study. Then we consider the effect of bias voltage to construct the complete equivalent circuit . We examine the result with practical values and we analyze the relation between parameters and frequency . Finally , we propose a design flow to design cMUT in simple and precise way .
第一章 概論
1-1 研究動機
1-2 cMUT 架構
1-3 工作原理
1-4 製程摘要
1-5 論文架構
第二章 cMUT 等效電路
2-1 薄膜振動行為分析
2-2 薄膜阻抗 Zm
2-3 薄膜阻抗化簡
2-4 cMUT 電機性到機械性部份
2-5 cMUT 機械性到聲波部份
2-6 傳播介質之聲波特徵阻抗
2-7 cMUT 等效電路
第三章 cMUT 之直流偏壓
3-1 cMUT 之崩潰偏壓
3-2 發射模式下直流偏壓對薄膜阻抗之影響
3-3 直流偏壓下發射模式之等效電路與頻率響應
3-4 直流偏壓下接收模式之等效電路與頻率響應
第四章 cMUT 設計
4-1 共振頻率、直流偏壓與頻寬和元件各尺寸之關係
4-1-1 水中發射模式之頻率響應對各參數之關係
4-1-2 空氣中發射模式之頻率響應對各參數之關係
4-1-3 水中接收模式之頻率響應對各參數之關係
4-1-4 空氣中接收模式之頻率響應對各參數之關係
4-2 參數設定
4-3 設計目標
4-4 設計流程
4-5 設計結果
第五章 結論與展望
5-1 討論與結論
5-2 未來展望
[1]李百祺,”醫用超音波原理”,2001
[2] J. F. Havlice and J. C. Taenzer, “Medical ultrasound imaging: An overview of principles and instrumentation,” in Proc. IEEE, vol. 67, pp.620-641, 1979.
[3]R. L. Goldberg and S. W. Smith, “Multilayer piezoelectric ceramics for two-dimensional array transducers,” IEEE Trans. Sonics. Ultrason., Ferroelect., Freq. Contr.,, vol. 41, pp. 761-771, Sep. 1994.
[4] M. E. Schafer and P. A. Lewin, “The influence of front-end hardware on digital ultrasonic imaging,” IEEE Trans. Sonics. Ultrason., vol. 31, pp. 295-3m 06, 1984.
[5] 梁智全, ”Characterization , Fabrication and Numerical Algorithm for constructing equivalent circuits of capacitive Micromachined Ultrasonic Transducer”,中華民國九十一年六月
[6] Baris Bayram ,Goksen G.Yaralioglu , Arif Ergun and B.T. Khuri-Yakub, “Influence of the electrode size and location on the performance of a cMUT,” in Ultrasonics Symposium, 2001 IEEE , Vol. 2 ,pp. 949 -952 2001.
[7]I. Ladabaum, X. C. Jin, H. T. Soh, A. Atalar, and B. T. Khuri-Yakub, “Surface micromachined capacitive ultrasonic transducers,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol.45, no.3, pp.678-690,1998.
[8] Caronti, A.; Caliano, G.; Iula, A.; Pappalardo, M.; “An accurate model for capacitive micromachined ultrasonic transducers,”in
Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions Vol. 49 Issue: 2 ,pp. 159 -168 Feb 2002
[9]W. P. Mason, Electromechanical Transducers and Wave Filters. New York: Van Nostrand,1942.
[10]D. K. Chen, Field and wave electromagnetics, Addison-Wesley, 1989.
[11]R. G. Pridham and R. A. Nucci, “Digital interpolation beamforming for low-pass and bandpass signals,” in Proc. IEEE, vol. 67 pp.904-919, 1979.
[12]Jan van Deventer, Torbjörn Löfqvist,Jerker Delsing,“PSpice Simulation of Ultrasonic Systems” IEEE Trans. Ultrason., Ferroelect., Freq. Contr.,vol.47,no.4,July 2000.
[13]D. S. Steinberg, Vibration analysis for electronic equipment. John Wiley & Sons ,Inc 1973
[14]C. F. Beards , Vibration analysis and control system dynamics. John Wiley & Sons ,Inc 1981
[15]J. W.(Lord Rayleigh) Strutt, The Theory of Sound. New Yourk: Macmillan, 1877-78.
[16]A. Bozkurt, I. Ladabaum, A. Atalar, B. T. Khuri-Yakub, “Theory and Analysis of Electrode Size Optimization for Capacitive Microfabricated Ultrasonic Transducers,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr.,vol.46,no.6,November 1999.
[17]Thomas D. Rossing, Neville H. Fletcher, Principles of Vibration and Sound.
[18]L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics. 3 ed. New York: Wiley,1982.
[19]H. J. Pain, The Physics of Vibrations and Waves. 4 ed. New York: Wiley,1993.
[20]Peter C. Eccard *, Kurt Niederer, “Micromachined ultrasound transducers with improved coupling factors from a CMOS compatible process,” Ultrasonics 38(2000) 774-780.
[21]X. C. Jin, I. Ladabaum, and B. T. Khuri-Yakub, “The Microfabrication of Capacitive Ultrasonic Transducers”Journal of Microelectromechanical systems, vol. 7, no. 3, September 1998.
[22]Eccardt, P., Niederer, K., Scheiter, T., and Hierold, C., “Surface micromachined ultrasound transducers in CMOS technology,” in Ultrasonics Symposium, San Antonio,USA, Novermber 1996, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., pp. 959-962.
[23]Jin, X. C., Ladabaum, I., and Khuri-Yakub, B. T., “The microfabrication of capacitive ultrasouic transducers,” in International Conference on Solid-State Sensors and Actuators, Chicago, USA, June 1997, IEEE Electron Device Society, pp. 437-440.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top