
[1] T. Ohira et al., “Development of key monolithic circuits to Kaband full MMIC receivers,” in IEEE Microwave and Millimeterwave Monolithic Circuits Symp., pp. 6974, June 1987. [2] H. Ogawa, and A. Minagawa, “ Uniplanar MIC balanced multipliera proposed new structure for MIC’s,” IEEE Trans. Microwave Theory Tech., vol. 35, pp. 13631368, Dec. 1987. [3] M. Muraguchi, T. Hirota, A. A. Minakawa, K. Ohwada, and T. Sugeta,“Uniplanar MMIC’s and their applications,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 1896—1901, Dec. 1988. [4] K. Hettak, and G. Y. Delisle, “A 38GHz integrated uniplanar subsystem for highspeed wireless broadband multimedia systems”, IEEE Trans. Microwave Theory Tech., vol. 47, pp. 935942, June 1999. [5] K. C. Gupta, R. Garg, L. Bahl, and P. Bhartia, Microstrip Line and Slotlines, 2nd Ed., Artech House, Inc., Massachusetts, 1996 [6] H. Ogawa, M. Aikawa, and M. Akaike, “Integrated balanced BPSK and QPSK modulators for the Kaband,” IEEE Trans. Microwave Theory Tech., vol. 30, pp. 227—234, March 1982. [7] S. Maas, and K. W. Chang, “A broadband, planar, doubly balanced monolithic Kaband diode mixer,” IEEE Trans. Microwave Theory Tech., vol. 41, pp. 2330—2335, Dec. 1993. [8] K. Hettak, and G. Y. Delisle, “A novel class of CPW coupled patch antenna for polarization and frequency diversities,” in APS Int. Symp. Dig., June 2002, pp. 222—225. [9] K. Hettak, N. Dib, and A. Omar, “A new class of miniature radiationless CPW shunt stubs printed on the center conductor,” in IEEE MTTS Int. Microwave Symp. Dig., 1999, pp. 13351338. [10] X. Xing, Y. Wang, and D. Chen, “A broad band uniplanar balanced mixer using coplanar waveguideslotline hybridring,” in APMC2000, Dec. 1999, pp. 132134. [11] J. Putnam and R. Puente, “A monolithic imagerejection mixer on GaAs using lumped elements,” Microwave J., pp. 107—116, Nov. 1987. [12] C. —Y. Chang, C. —C. Yang, and D. —C. Niu, “A multioctave bandwidth ratrace singly balanced mixer,” IEEE Microwave Guided Wave Lett., vol. 9, pp. 3739, Jan. 1999. [13] B. Schuppert, “Microstrip/slotline transition: modeling and experimental investigation,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 12721282, August 1988. [14] B. Schuppert, “Analysis and design of microwave balanced mixers,” IEEE Trans. Microwave Theory Tech., vol. 34, pp. 120128, Jan. 1986. [15] K. Kamozaki, N. Kurita, T. Tanimoto, et al., “50100 GHz octave band MMIC mixers,” in IEEE RFIC Symp. Dig., June 1997, pp. 9598. [16] K. Nishikawa, K. Kamogawa, T. Nakagawa, et al., “Broadband and compact SiBJT balanced upconverter MMIC using Si 3D MMIC technology,” in IEEE MTTS Int. Microwave Symp. Dig., May 2001, pp. 8790. [17] M. C. Tsai et al., “A compact wideband balanced mixer,” in IEEE Microwave MillimeterWave Monolithic Circuits Symp. Dig., 1994, pp.135—138. [18] M. Shimozawa et al., “A parallel connected Marchand balun spiral shaped equal length coupled lines,” in IEEE MTTS Int. Microwave Symp. Dig., 1999, pp. 1737—1740. [19] M. Morgan, and S. Weinreb, “A monolithic HEMT diode balanced mixer for 100140 GHz,” in IEEE MTTS Int. Microwave Symp. Dig., May 2001, pp. 99102. [20] J. —M. Mourant, and S. Jurgiel, “A broadband planar image reject mixer,” in IEEE MTTS Int. Microwave Symp. Dig., May 1994, pp. 16371640. [21] S. A. Mass, M. Kintis, F. Fong, and M. Tan, “A broadband planar monolithic ring mixer,” in IEEE Microwave and MillimeterWave Monolithic Circuit Symp., 1996, pp. 5154. [22] S. A. Mass, F. M. Yamada, A. K. Oki, et al., ”An 1840 GHz monolithic ring mixer,” in IEEE RFIC Symp. Dig., June 1998, pp. 2932. [23] S. A. Mass, and K. W. Chang, “A broadband, planar, doubly balanced monolithic Kaband diode mixer,” IEEE Trans. Microwave Theory Tech., vol. 41, pp. 23302335, Dec. 1993. [24] Y. I. Ryu, K. W. Kobayashi, and A. K. Oki, “A monolithic broadband doubly balanced EHF HBT star mixer with novel microstrip baluns,” in IEEE MTTS Int. Microwave Symp. Dig., 1995, pp. 119122. [25] T. Newman, and K. T. Ng, “A submillimeterwave planar diode mixerdesign and evaluation,” in IEEE MTTS Int. Microwave Symp. Dig., June 1991, pp. 12931296. [26] K. Louie, and O. S. Park, “A Wband wideband crossbar mixer,” in IEEE MTTS Int. Microwave Symp. Dig., June 1982, pp. 369371. [27] L. T. Yuan, and P. G. Asher, “A Wband monolithic balanced mixer,” in IEEE MTTS Int. Microwave Symp. Dig., June 1985, pp. 113116. [28] P. —C. Hsu, C. Nguyen, and M. Kintis, “Design and performance of a new uniplanar diode mixer,” IEEE Microwave Guided Wave Lett., vol. 10, pp. 192194, May 2000. [29] P. C. Hsu, C. Nguyen, and M. Kintis, “A new uniplanar broadband singly balanced diode mixer,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 17821784, Nov. 1998. [30] H. Gu, and K. Wu, ”A novel uniplanar balanced subharmonically pumped mixer for lowcost broadband millimeterwave transceiver design,“ in IEEE MTTS Int. Microwave Symp. Dig., June 2000, pp. 635638. [31] J. Eisenberg, and W. Ou, “A new planar doubledouble balanced MMIC mixer structure,” in IEEE MTTS Int. Microwave Symp. Dig., June 1991, pp. 8184 [32] S. —G. Mao, H. K. Chiou, and C. H. Chen, “Design and modeling of uniplanar doublebalanced mixer,” IEEE Microwave Guided Wave Lett., vol. 8, pp. 354356, Oct. 1998. [33] C. —Y. Chang, C. —C. Yang, and D. —C. Niu, “A decade bandwidth resistive FET singly balanced MIC mixer,” in IEEE MTTS Int. Microwave Symp. Dig., June 1999, pp. 331334. [34] C. —Y. Chang, C. —W. Tang, and D. —C. Niu, “Ultrabroadband doubly balanced star mixers using planar Mouw''s hybrid junction,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 10771085, June 2001. [35] M. B. Steer, and J. W. Bandler, “Computeraided design of RF and microwave circuits and systems,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 9961005, March 2002. [36] S. M. ElGhazaly, “Status of global modeling of microwave circuits and devices,” in APMC2000, Dec. 2000, pp. 908911. [37] R. O. Grondin, S. M. ElGhazaly, and S. Goodnick, “A review of global modeling of charge transport in semiconductors and fullwave electromagnetics,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 817829, June 1999. [38] R. O. Grondin, S. M. ElGhazaly, and S. Goodnick, “Correction to "A review of global modeling of charge transport in semiconductors and fullwave electromagnetics",” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 21672167, Nov. 1999. [39] P. Ciampolini, L. Roselli, G. Stopponi, and R. Sorrentiono, “Global modeling strategies for the analysis of highfrequency integrated circuits,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 950955, June 1999. [40] S. Beaussart, O. Perrin, M. —R. Friscourt, and C. Dalle, ”Millimeterwave pulsed oscillator global modeling by means of electromagnetic, thermal, electrical, and carrier transport physical coupled models,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 929934, June 1999. [41] M. A. Alsunaidi, S. M. S. Imtiaz, and S. M. ElGhazaly, “Electromagnetic wave effects on microwave transistors using a fullwave timedomain model,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 799808, June 1996. [42] S. M. ElGhazaly, and T. Itoh, “Electromagnetic interfacing of semiconductor devices and circuits,” in IEEE MTTS Int. Microwave Symp. Dig., June 1997, pp. 151154. [43] S. M. S. Imtiaz, and S. M. ElGhazaly, “Global modeling of millimeterwave circuits: electromagnetic simulation of amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 22082216, Dec. 1997. [44] S. Goasguen, M. M. Tomeh, and S. M. ElGhazaly, “Full wave analysis of FET fingers using various semiconductor physical models,” in IEEE MTTS Int. Microwave Symp. Dig., May 2001, pp. 415418. [45] A. Cidronali, G. Leuzzi, G. Collodi, and G. Manes, “Numerical model of a 0.2 μm AlGaAsGaAs HEMT including electromagnetic effects,” in Compound Semiconductors Int. Symp., Sept. 1997, pp. 635 638. [46] A. Cidronali, G. Leuzzi, G. Manes, and F. Giannini, “Physical/electromagnetic pHEMT modeling,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 830838, March 2003. [47] P. J. Rudge, R. E. Miles, M. B. Steer, and C. M. Snowden, “Investigation into intermodulation distortion in HEMTs using a quasi2D physical model,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 23152320, Dec. 2001. [48] S. M. Hammadi and S. M. ElGhazaly, “Airbridged gate MESFET a new structure to reduce wave propagation effects in highfrequency transistors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 890899, June 1999. [49] A. Witzig, C. Schuster, P. Regli, and W. Fichtner, “Global modeling of microwave applications by combining the FDTD method and a general semiconductor device and circuit simulator,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 919928, June 1999. [50] H. —P. Tsai, R. Coccioli, and T. Itoh, “Time domain global modeling of EM propagation in semiconductor using irregular grids,” in IEEE MTTS Int. Microwave Symp. Dig., June 2000, pp. 367370. [51] M. Toupikov, G. Pan, and S. M. ElGhazaly, “Global modeling of microwave devices using wavelets,” in IEEE MTTS Int. Microwave Symp. Dig., June 1998, pp. 263266. [52] S. Goasguen, and S. M. ElGhazaly, “Interpolating wavelet scheme toward global modeling of microwave circuits,” in IEEE MTTS Int. Microwave Symp. Dig., June 2000, pp. 375378. [53] S. Goasguen, M. M. Tomeh, and S. M. ElGhazaly, “A global modeling approach using interpolating wavelets,” in IEEE MTTS Int. Microwave Symp. Dig. , May 2001, pp. 897900. [54] Y. A. Hussein, and S. M. ElGhazaly, “Global modeling of active microwave devices incorporating a novel largesignal timedomain fullhydrodynamic physical simulator using waveletbased adaptive grids,” in IEEE MTTS Int. Microwave Symp. Dig., June 2002, pp. 743746. [55] S. Goasguen, S. M. Hammadi, and S. M. ElGhazaly, “A global modeling approach using artificial neural network,” in IEEE MTTS Int. Microwave Symp. Dig., June 1999, pp. 1319. [56] S. Goasguen, and S. M. ElGhazaly, “A practical largesignal global modeling simulation of a microwave amplifier using artificial neural network,” IEEE Microwave and Guided Wave Letters, vol. 10, pp. 273275, July 2000. [57] M. Lazaro, I. Santamaria, and C. Pantaleon, “Neural networks for large and smallsignal modeling of MESFETHEMT transistors a comparative study,” in Instrumentation and Measurement Technology Conference, May 2000, pp. 14. [58] M. Lazaro, I. Santamaria, C. Pantaleon, C. Navarro, A. Tazon, and T. Fernandez, “A modular neural network for global modeling of microwave transistors,” in Proceedings of the IEEEINNSENNS International Joint Conference, July 2000, pp. 389 394. [59] Y. A. Hussein, and S. M. ElGhazaly, “Largesignal physical modeling of active microwave devices using an adaptive realcoded genetic algorithm,” in IEEE APS Int. Symp. Dig., June 2002, pp.726729 [60] W. Sui, D. A. Christensen, C. H. Durney, “Extending the twodimensional FDTD method to hybrid electromagnetic systems with active and passive lumped elements,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 724730, April 1992. [61] V. A. Thomas, and M. E. Jones, M. PiketMay, A. Taflove, and E. Harrigan, “The use of SPICE lumped circuits as subgrid models for FDTD analysis,” IEEE Microwave Guided Wave Lett., vol. 5, pp. 141143, May 1994. [62] M. PiketMay, A. Taflove, J. Baron, “FDTD modeling of digital signal propagation in 3D circuits with passive and active loads,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 15141523, August 1994. [63] B. Toland, B. Houshmand, and T. Itoh, “Modeling of nonlinear active regions with the FDTD method,” IEEE Microwave Guided Wave Lett., vol. 3, pp. 333335, Sept. 1993. [64] C. —N. Kuo, R. —B. Wu, B. Houshmand, and T. Itoh, “Modeling of microwave active devices using the FDTD analysis based on the voltagesource approach,” IEEE Microwave Guided Wave Lett., vol. 6, pp. 199201, May 1996. [65] C. —N. Kuo, B. Houshmand, and T. Itoh, “Fullwave analysis of packaged microwave circuits with active and nonlinear devices: an FDTD approach,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 819826, May 1997. [66] K. —P. Ma, M. Chen, B. Houshmand, Y. Qian, and T. Itoh, “Global timedomain fullwave analysis of microwave circuits involving highly nonlinear phenomena and EMC effects,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 859866, June 1999. [67] B. Toland, J. Lin, B. Houshmand, and T. Itoh, “Electromagnetic simulation of mode control of a two element active antenna,” in IEEE MTTS Int. Microwave Symp. Dig., May 1994, pp. 883886 [68] C. —N. Kuo, V. A. Thomas, S. T. Chew, B. Houshmand, and T. Itoh, “ Small signal analysis of active circuits using FDTD algorithm,” IEEE Microwave Guided Wave Lett., vol. 5, pp. 216218, July 1995. [69] M. Chen, W. R. Deal, B. Houshmand, and T. Itoh, “Global timedomain fullwave analysis of microwave FET oscillators and selfoscillating mixers,” in IEEE MTTS Int. Microwave Symp. Dig., June 1998, pp. 11351138. [70] W. Thiel, and W. Menzel, “Fullwave design and optimization of mmwave diodebased circuits in finline technique,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 24602466, Dec. 1999. [71] J. A. Pereda, F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, “A new algorithm for the incorporation of arbitrary linear lumped networks into FDTD simulators,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 943949, June 1999. [72] G. Emili, F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, “Rigorous modeling of packaged Schottky diodes by the nonlinear lumped network (NL2N)FDTD approach,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 22772282, Dec. 2000. [73] S. D. Gedney, F. S. Lansing, and D. L. Rascoe, “Full wave analysis of microwave monolithic circuit devices using a generalized Yeealgorithm based on an unstructured grid,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 13931400, August 1996. [74] R. Achar, M. A. Kolbehdari, and M. Nakhla, “A unified approach for mixed EM and circuit simulation using modelreduction techniques,” in IEEE MTTS Int. Microwave Symp. Dig. , June 1997, pp. 10171020. [75] S. —H. Chang, R. Coccioli, Y. Qian, and T. Itoh, “A global finiteelement timedomain analysis of active nonlinear microwave circuits,” IEEE Trans. Microwave Theory Tech., vol. 47 pp. 24102416, Dec. 1999. [76] K. Guillouard, M. F. Wong, V. F. Hanna, and J. Citerne, “A new global finite element analysis of microwave circuits including lumped elements,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 25872594, Dec. 1996. [77] M. Farina, L. Pierantoni, and T. Rozzi, “Field analysis and design criteria for Tgate TWFET''s with positive gain,” in IEEE MTTS Int. Microwave Symp. Dig., May 1995, pp. 12691272. [78] M. Farina, G. Gerini, and T. Rozzi, “Efficient fullwave analysis of stratified planar structures and unbiased TWFET''s,” IEEE Trans. Microwave Theory Tech., vol. 43, pp. 132211329, June 1995. [79] M. Farina, and T. Rozzi, “Fullwave modeling of linear FETs for millimeter waves,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 14431450, August 2001. [80] G. Avitabile, A. Cidronali, G. Vannini, and G. Manes, “Multifinger effect in a GaAs FET distributed large signal CAD model,” in Electron Devices Meeting, Dec. 1996, pp. 159162. [81] A. Cidronali, G. Collodi, A. Santarelli, G. Vannini, and G. Manes, “Smallsignal distributed FET modeling through electromagnetic analysis of the extrinsic structure,” in IEEE MTTS Int. Microwave Symp. Dig., June 1998, pp. 287290. [82] A. Cidronali, G. Collodi, G. Vannini, and A. Santarelli, “A new approach to FET model scaling and MMIC design based on electromagnetic analysis,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 900907, June 1999. [83] A. Laloue, J. B. David, R. Quere, B. MalletGuy, E. Laporte, J. F. Villemazet, and M. Soulard, “Extrapolation of a measurementbased millimeterwave nonlinear model of pHEMT to arbitraryshaped transistors through electromagnetic simulations,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 908913, June 1999. [84] E. Larique, S. Mons, D. Baillargeat, S. Verdeyme, M. Aubourg, R. Quere, P. Guillon, C. Zanchi, and J.Sombrin, “Linear and nonlinear FET modeling applying an electromagnetic and electrical hybrid software,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 915918, June 1999. [85] A. Cidronali, G. Collodi, A. Santarelli, G. Vannini, and G. Manes, “Millimeterwave FET modeling using onwafer measurements and EM simulation,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 425432, Feb. 2002. [86] S. Tsitsos, N. Karamitsos, B. M. Dillon, and A. A. P. Gibson, “Variational solution of microwave circuits and structures,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 460462, March 1996. [87] R. Gillard, S. Dauguet, and J. Citerne, “Correction procedures for the numerical parasitic elements associated with lumped elements in global electromagnetic simulators,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 12981306, Sept. 1998. [88] M. I. Aksun and R. Mittra, “Estimation of spurious radiation from microstrip etches using closedform Green’s functions,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 20632069, Nov. 1992. [89] E. Vourch, M. Drissi, and J. Citerne, “A fullwave analysis of active uniplanar structures,” in IEEE APS Int. Symp. Dig., June 1995, pp. 10621065. [90] S. Mass, Microwave Mixers, 2nd Ed., Artech House, Inc., Massachusetts, 1993 [91] B. Razavi, RF Microelectronics, Prentice Hall [92] K. L. Fong, and R. G. Meyer, “Monolithic RF active mixer design,” IEEE Trans. on circuits and systems II: analog and digital signal processing, vol. 46, pp. 231239, March 1999 [93] K. Chang, I. Bahl, and V. Nair, RF and Microwave Circuit and Component Design for Wireless Systems, John Wiley & Sons, Inc., New York, 2002 [94] A. Sommerfeld, Partial Differential Equations in Physics, New York: Academic Press, 1964. [95] J. Sercu, N. Fache, F. Libbrecht, and P. Lagasse, “Mixed potential integral equation technique for hybrid microstripslotline multilayered circuits using a mixed rectangulartriangular mesh,” IEEE Trans. Microwave Theory Tech., vol. 43, pp. 11621172, May 1995. [96] K. A. Michalski, and D. Zheng, “Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, part I：theory,” IEEE Trans. Antennas Propagat., vol. 38, pp. 335344, March 1990. [97] K. A. Michalski, and D. Zheng, “Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, part II：implementation and results for contiguous halfspaces,” IEEE Trans. Antennas Propagat., vol. 38, pp. 345352, March 1990. [98] M. —D. Wu, Analysis and Characterization of Coplanar Waveguide Discontinuities, Doctor Thesis, National Taiwan University, 1995. [99] J. R. Mosig, “Integral equation technique,” in T. Itoh, Ed., Numerical Techniques for Microwave and Millimeter Wave Passive Structures. New York: Wiley, 1989, pp. 133207. [100] R. Gillard, S. Dauguet, and J. Citerne, “Correction procedures for the numerical parasitic elements associated with lumped elements in global electromagnetic simulators,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 12981306, Sept. 1998. [101] L. Zhu and K. Wu, “Unified equivalentcircuit model of planar discontinuities suitable for field theorybased CAD and optimization of M(H)MIC’s”, IEEE Trans. Microwave Theory Tech., vol. 47, pp. 15891602, Sept. 1999. [102] L. Zhu and K. Wu, “Characterization of finiteground CPW reactive seriesconnected elements for innovative design of uniplanar M(H)MICs”, IEEE Trans. Microwave Theory Tech., vol. 50, pp. 549 557, Feb. 2002. [103] L. Zhu and K. Wu, “Fieldextracted lumpedelement models of coplanar stripline circuits and discontinuities for accurate radiofrequency design and optimization”, IEEE Trans. Microwave Theory Tech., vol. 50, pp. 1207 1215, April. 2002. [104] M. D. Wu, S. —M. Deng, R. —B., Wu, and P. Hsu, “Fullwave characterization of the mode conversion in a coplanar waveguide rightangled bend”, IEEE Trans. Microwave Theory Tech., vol.43, pp. 25322538, Nov, 1995. [105] P. Antognetti and G. Massobrio, Semiconductor Device Modeling with SPICE, New York: McGrawHill, 1988 [106] C. —H. Wang, H. Wang and C. H. Chen, “A new globalanalysis model for microwave circuits with lumped elements,“ in IEEE MTTS Int. Microwave Symp. Dig., May 2001, pp. 19371940. [107] Y. S. Lin and C. H. Chen, “Design and modeling of twinspiral coplanarwaveguidetoslotline transitions,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 463466, March 2000. [108] M. W. Chapman and S. Raman, “A 60GHz uniplanar MMIC 4x subharmonic mixer,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 25802588, Nov. 2002. [109] TRW 0.15µm pHEMT Design Manual, TRW. [110] Y. S. Lin and C. H. Chen, “Novel lumpedelement uniplanar transitions,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 23222330, Dec. 2001. [111] T. Krems, A. Tessmann, W. H. Haydl, C. Schmelz, and P. Heide, “Avoiding cross talk and feed back effects in packaging coplanar millimeterwave circuits,” in IEEE MTTS Int. Microwave Symp. Dig., 1998, pp. 10911094. [112] WIN 0.15um Power (10V) pHEMT Design Kit (Rev.0.2.1), WIN semiconductors.
