(100.26.176.182) 您好!臺灣時間:2019/12/12 19:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:李翊銓
研究生(外文):YI-CHUAN LEE
論文名稱:粒徑分佈對不透光度之影響
論文名稱(外文):The Effects of Size Distribution on Opacity Measurement
指導教授:陳志傑陳志傑引用關係
指導教授(外文):Chih-Chieh Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:60
中文關鍵詞:氣膠不透光度粒徑分佈比爾定律
外文關鍵詞:AerosolOpacitySize distributionBeer's law
相關次數:
  • 被引用被引用:0
  • 點閱點閱:471
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:0
依據現行之環境法令,在固定污染源空氣污染物與交通工具空氣污染物排放標準中,對於粒狀污染物的管制均著重於不透光率(opacity)的規範。然而在規範中卻僅訂定標準,對於所排放之粒狀物的分佈特性以及排放條件並沒有明確的定義。此外,一些相關的研究在粒徑分佈與光學特性方面也缺乏詳細的探討。因此本研究以微粒粒徑分佈為研究主軸,希望釐清不透光度與微粒粒徑以及重量濃度之間的互動關係。
本研究使用單一粒徑分佈之壓克力粉塵與多粒徑分佈之氧化鋁粉塵作為挑戰氣膠;微粒分散及微量供給器(PALAS)作為氣懸微粒產生器;並利用濾紙秤重以得重量度之變化。長1.7公尺內徑10公分的壓克力管為測試腔,管內微粒濃度可改變微粒分散及微量供給器的推進速度或稀釋空氣流量來作調整,可使不透光度範圍達0~100%。以氦氖雷射作為光源,尾端使用能量計偵測通過測試腔後之不同光強度。並於測試過程中使用微粒電移動度掃瞄分徑器(SMPS)與氣動微粒分徑器(APS)量測氣懸微粒之粒徑分佈,後計算理論不透光度,並比較理論不透光度與實測不透光度之差異。
單一粒徑分佈下,相同不透光度下,不同粒徑其各重量濃度值變異性大;而在相同重量濃度下,具有較大之消光效率之微粒其不透光度越高。而在多粒徑分佈下,相同不透光度值在不同粒徑分佈時,其重量濃度差異性益大。當粒徑分佈主要範圍之粒徑有較高之消光效率,其不透光度值在較低之重量濃度時有較大之值。因此,如空污費依此不透光度標準進行徵收,而沒有依照各製程之特性進行不透光度調整,則會一個嚴重高估或低估污染物狀況之問題,且亦無法妥善反映重量濃度或粒徑分佈等資訊。

Opacity meter is commonly used to monitor the particulate matter exhaust from stationary sources. In general, the opacity readings are primarily determined by two factors: particle size distribution and refractive index, given that the light wavelength is fixed. However, the experimental data were rarely available to demonstrate the extent of these effects caused by the changes in aerosol size distribution and optical property. Therefore, this work is designed to demonstrate that using opacity meter to regulate the aerosol emission from stationary sources may not be appropriate, if aerosol size distribution and optical properties of emitted particulate matter are not considered.
In order to investigate the effect of aerosol size distribution and aerosol mass concentration on opacity measurement, a home-made opacity meter was set up, which included a He-Ne laser as the light source, and a microprocessor-based laser energy monitor for measuring the light intensity near the wavelength of He-Ne laser. Five sizes of monodisperse acrylic powders, ranging from 0.15 to 5 m, and three sizes of polydisperse aluminum oxide were used as the challenge agents. A Palas powder disperser was used to disperse the powders. An acrylic tube (1.7 m long and 10 cm inner diameter) was used as the test chamber. The aerosol number (or mass) concentration can be varied by adjusting the powder feeding rate and/or dilution air flow, covering the opacity ranging from 0 to 100%. A scanning mobility particle sizer and an aerodynamic particle sizer were used to monitor and verify the size distribution.
The results showed that aerosol particles of the same mass concentration may have different opacity readings primarily due to the difference in size distribution. In general, particles of smaller size distribution demonstrate higher opacity, as can be expected instinctively. The only exception is when particles fall in the Mie scattering range and the size distribution is monodisperse to a certain degree. Then, the extinction coefficients tend to oscillate and then converge to a value of 2 as the aerosol size increases, which is also referred to as extinction paradox. Therefore, aerosol size distribution of emitted particulate matter needs to be considered if opacity meter is to be used as the continuous emission monitor.

摘要……………………………………………………………………………………i
Abstract…………………………………………………………………….. ………...ii
目錄………………………………………………………………………….………..iii
圖目錄……………………………………………………………………….……......iv
符號表..…………………………………………………………………….………….v
一、 研究背景與目的……………………………………………………..………....1
二、 文獻探討…………………………………………………………………...…...2
2-1 不透光度……………………………………………………………..……7
2-2 光與氣懸微粒………………………………………………………..……8
2-3 微粒消光效率………………………………………………………..…..10
2-4 懸浮微粒群之消光…………………………………………………..…..14
2-5 不透光度影響因子…………………………………………………..…..17
三、 研究方法與材料
3-1 氣膠光學特性測試系統……………………………………………..…..19
3-2 微粒產生設備與挑戰氣膠………………………………………..……..20
3-3 散光效率數值電腦運算表之建立………………………………..……..25
3-4 單一粒徑分佈氣懸微粒對不透光度之影響…………………..………..25
3-5 多粒徑分佈氣懸微粒為不透光度之影響……………………..………..26
四、 結果與討論
4-1 系統穩定度測試……………………………………………………..…..26
4-2 單一粒徑分佈氣懸微粒對不透光度之影響………………………..…..28
4-3 多粒徑分佈氣懸微粒為不透光度之影響………………………..……..31
五、 結論與建議
5-1 結論……………………………………………………………..………..32
5-2 建議…………………………………………………………..…………..33
參考文獻…………………………………………………………………..………...35

陳龍實,排放管道污染源模擬煙囪測試系統,能源、資源與環境,Vol. 5. No. 1. 1992。
行政院環保署,「煙道排氣粒狀污染物檢測比測系統建置計畫」(EPA-86-1206-09-01),1997。
行政院環保署,「溫度對排放管道粒狀污染物採樣影響之研究」(EPA-87-1801-03-09),1998。
行政院環保署,「煙道粒狀物檢測比測系統維護與資料庫建置」(NSC 88-EPA-Z-002-024),1999。
行政院環保署,「煙道粒狀物檢測比測系統維護與資料庫建置(Ⅱ)」(EPA89-1103-03-02),2000。
行政院環保署,「煙道粒狀物檢測比測系統維護與資料庫建置(Ⅲ)」(EPA-90-1601-03-01),2001。
行政院環保署,「煙道粒狀物檢測比測系統維護與資料庫建置(Ⅳ)」(EPA-91-1601-02-01),2002。
王秋森,氣懸膠技術學,國立台灣大學醫學院出版委員會,初版,1999。
鄭福田,微粒導論,國立編譯館,1990。
Bohern, Craig F. and Donald R. Huffman. 1983, Absorption and Scattering of Light by Small Particles. John-Wiley & Sons, New York.
Budavari, Susan, O’Neil, Maryadele J., Smith, Ann, Heckelman, Patricia E., Kinneary, Joanne F., 1996, The Merck Index., Merck & CO., Inc., U.S.A.
Conner, W.D. and Knapp, K.T., 1988, Relationship between the Mass Concentration and Light 1 Attenuation of Particular Emissions from Coal-Fired Power Plants. Journal of the Air Pollution Control Association, Vol.38, No.2, 152-157.
Cowen, S.J., Ensor, D.S., 1985, The Relationship of Fly Ash Composition, Refractive Index, and Density to In-Stack Opacity, Environmental Protection Agency Research Triangle Park, NC, EPA/600/7-86/003.
Engdahl R.B., 1951, Correlations of Solids Content in Gas. Mech. Eng. 73:243
Ensor, D.S. and Pilat, M.J., 1971, Calculation of Smoke Plume opacity From Particulate Air Pollutant Properties. Journal of the Air Pollution Control Association, Vol.21, No.8, 497-501.
Heitbrink, W. A. and Baron, P. A., 1992, An Approach to Evaluating and Correcting Aerodynamic Particle Sizer Measurements for Phantom Particle Count Cretion. Am. Ind. Hyg. Assoc. 53(7):427-431.
Heitbrink,W. A., Baron, P. A. and Willeke, K. 1991, Coincidence in time-of-flight spectrometers: phantom particle creation. Aerosol Sci. Technol. 14:112-126.
Hinds, William C. 1999, Aerosol Technology - Properties, Behavior, and Measurement of Airborne Particles. John-Wiley & Sons, New York.
Hodkinson J. R., 1966, The Optical Measurement of Aerosols, Aerosol Science, C. N. Davies, Ed. Academic Press, New York, Chap 10.
Horvath, H. and Habenreich,T. A., 1989, Absorption Coefficient of the Vienna Aerosols: Comparision of Two Methods. Aerosol Science and Technology, 10, 506-514.
Van de Hulst, H. C., 1957, Light Scattering by Small Particles. John-Wiley & Sons, New York.
Lee, K.T., 1987, Development and Application of A Microcomputer Based Model for Acid Plume Opacity. Proc.87-106, b.13, 80th, Annual Meeting of JAPCA, New York,.
Malm, William C. and Persha, 1991, Considerations in the Accuracy of a Long-Path Transmissometer. Aerosol Science and Technology, 14, 459-471.
Mathai, C. V., John G. Watson, Jr., C. Fred Rogers, Judith C. Chow, Ivar Tombach, Judith O. Zwicker, Thomas Cahill, Patrick Feeney, Robert Eldred, Marc Pitchford, and Peter K. Mueller, 1990. Intercomparison of ambient aerosol sampler used in western visibility and air quality studies. Environmental Science and Technology, 24, 1090-1099.
Mitchell R.I. and Engdahl R.B, 1963, A Survey for Improved Methods for the Measurement of Particulate Concentration in Flowing Gas Streams. J. Air Poll. Control Assoc. 13:9.
Nader, J.S. and Conner, W.D., 1978, Impact of Sulfuric Acid Emissions on Plume Opacity. Workshop Proceedings on Primary Sulfate Emissions from Combustion Sources, Vol.2, PP.121-135, EPA-600/9-78-0206.
Pilat, M., Thielke, J. and Raemhild, G., 1978, Plume Opacity Related to Aerosol Composition in An Oil-Fired Boiler. Progress Report, EPA Grant R803897, Department of Civil Engineering, University of Washington, Seattle, WA.
Pilat, M.J. and Wilder, J.M., 1983, Opacity of Monodisperse Sulfuric Acid Aerosols. Atmospheric Environment, Vol.17, No.9, PP.1825-1835.
Pilinis C., 1989, Numerical Simulation of Visibility Degradation Due to Particulate Matter: Model Development and Evaluation, Journal of Geophysical Research, 94, 9937-9946.
Reist, Parker C., 1993, Aerosol Science and Technology. (2nd edition) McGraw-Hill, New York.
Seinfeld, J.H. and Pandis, S.N., 1998, Atmospheric Chemistry and Phyics- From Air Pollution to Climate Change. John-Wiley & Sons, New York.
Thielke, J.F. and Pilat, M.J., 1978, Plume Opacity Related to Particle Mass Concentration and Size Distribution. Atmospheric Environment, Vol.12, 2439-2447.
USEPA 1999, Visibility Monitoring Guidance. Research Triangle Park. EPA-454/R-99-003.
Waggoner, A. P., Weiss, R. E., Ahlquist, N. C., Covert, D. S., Will, S., and Charlson, R. J., 1981, Optical Characteristics of Atmospheric Aerosols. Atmospheric Environment, 15, 1981-1909.
Wilder, J.M., 1981, Theoretical Droplet Size Distributions and Opacities of Sulfuric Acid Aerosols. M.S. Civil Engineering Thesis University of Washington, Seattle, WA.
Wilder, J.M. and Pilat, M.J., 1983, Calculated Droplet Size Distributions and opacities of Condensed Sulfuric Acid Aerosols. JAPCA, Vol.33, No.9, 858-863.
Wickramasinghe, N. C., 1973, Light Scattering Function for Small Particles with Applications in Astronomy. Wiley, New York.
White, W. H., 1986, On the Theoretical and Empirical Basis for Apportioning Extinction by Aerosols: a Critical Review. Atmospheric Environment, 20, 1659-1672.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔