跳到主要內容

臺灣博碩士論文加值系統

(98.84.25.165) 您好!臺灣時間:2024/11/11 14:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉智生
研究生(外文):Liu, Chie-sheng
論文名稱:以矽甲烷/乙炔/氫氣的化學氣相沈積系統於矽(100)基材上成長碳化矽之研究
論文名稱(外文):Synthesis of 3C-SiC Films on Si (100) by SiH4/C2H2/H2-CVD Reaction System
指導教授:洪儒生洪儒生引用關係
指導教授(外文):Lu-Sheng Hong
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:90
中文關鍵詞:碳化矽(100)化學氣相沈積法矽甲烷乙炔氫氣矽(100)
外文關鍵詞:3C-SiC(100)CVDsilaneacetylenehydrogenSi(100)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:438
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文乃以矽甲烷、乙炔、氫氣為原料氣體的冷壁式低壓化學氣相沈積法,探討在矽(100)基材上異質成長碳化矽磊晶薄膜的現象。薄膜成長分為初期碳化矽基材及長膜二階段。初期碳化為通入乙炔氣體及氫氣在矽(100)基材表面生成一層”緩衝層”,由探討碳化程序溫度(1000oC~1250oC)及碳化程序時間( 2 sec~ 5 min)對之後長膜的結晶性變化的實驗結果發現,初期的碳化程序對之後成長SiC(100)薄膜具有關鍵性的影響,乙炔因反應性較強極易造成碳的供給過多而沈積在表面形成碳膜。而以總壓3.6 torr、乙炔濃度0.5 sccm、氫氣濃度1000 sccm、溫度1070oC、時間10 sec的碳化條件為最佳。之後的薄膜成長條件為總壓3.6 torr,矽甲烷濃度1.82 sccm、乙炔濃度0.7 sccm、氫氣濃度1000 sccm、溫度1200oC的20 min長膜後晶粒大小有44 nm,且SiC(200)繞射峰強度最高可達35000 CPS。

3C-SiC films were grown on Si (100) substrate by a low pressure chemical vapor deposition (LPCVD) method using SiH4, C2H2 and H2 as the reactant gases. The preparation process included two steps, i.e., carbonization of Si substrates to form a buffer layer and the film growth afterward. Concentrations of C2H2 and substrate temperature during carbonization were varied to investigate their effects on SiC films crystallity. The results indicated that the carbonization process was the key rule for films growth. As a carbon source, C2H2 was found to be quite reactive because it caused too much carbon supply to form graphite like carbon deposits on the substrate surface. The carbonization condition of C2H2= 0.5 sccm, temperature =1070oC, total pressure =3.6 torr , and carbonization time= 10 sec was found optimum under the present deposition experiments. The best 3C-SiC (200) formed had an average grain size of 44 nm.

目錄
中文摘要.............................................................................................Ⅰ
英文摘要.............................................................................................Ⅱ
誌謝.....................................................................................................Ⅲ
目錄.....................................................................................................Ⅳ
圖索引.................................................................................................VII
表索引................................................................................................XIII
第一章 緒論
1.1 導言........................................................................................1
1.2 碳化矽製備方式....................................................................7
1.3 研究目的................................................................................11
第二章 實驗方法
2.1 實驗裝置...............................................................................12
2.2 矽基材的製備方法...............................................................16
2.3 實驗程序...............................................................................19
2.4 薄膜特性的量測...................................................................21
第三章 結果與討論
3.1 在Si(100)基材上成長碳化矽薄膜之初步研究
3.1.1不同晶面的Si基材對成長碳化矽薄膜的影響..................25
3.1.2 改變碳化時乙炔濃度對之後成長碳化矽薄膜的影響......28
3.1.3 長膜程序中原料氣體SiH4/C2H2供給比對成長碳化矽
薄膜的效應...........................................................................31
3.2 Si(100)基材預熱後的AFM表面形態
3.2.1 不同預熱溫度下Si(100)基材的AFM表面形態...............34
3.2.2改變基材預熱程序的壓力對Si(100)表面形態的影響.......38
3.3 碳化程序的溫度效應
3.3.1改變碳化程序的溫度對於Si(100)表面粗糙度的影響........41
3.3.2 Si(100)表面在碳化過程中的原子組成變化.........................44
3.3.3 碳化程序時的溫度變化對於之後成長SiC(100)薄膜的影響
................................................................................................49
3.4 碳化程序的時間長短之效應
3.4.1 改變碳化程序的時間對於碳化後Si(100)表面原子組成的影響............................................................................................54
3.4.2 碳化程序的時間對於碳化後Si(100)表面粗糙度的影響
..............................................................................................58
3.4.3改變碳化程序的時間變數對於之後成長SiC(100)薄膜的影響............................................................................................61
3.5 固定10 sec的碳化程序時間降低碳化程序溫度時的效應
3.5.1 Si(100)表面在碳化過程中的原子組成變化.......................65
3.5.2改變碳化程序的溫度對於之後成長SiC(100)薄膜的影響
..............................................................................................70
3.6 在1070oC的碳化程序溫度不同碳化時間對Si(100)基材的效應
3.6.1改變碳化處理時間對於碳化後Si(100)表面原子組成的影響
..............................................................................................74
3.6.2改變碳化時間對於Si(100)表面形態的影響......................78
3.6.3 固定碳化程序溫度為1070oC改變碳化程序的時間對於之後成長SiC(100)薄膜的影響...............................................81
第四章 結論...........................................................................................84
參考文獻.................................................................................................86
作者簡介.................................................................................................90

參考資料
1. J. Bardeen and W.H. Brattain,” The Transistor, A Semiconductor Triode,” Phys. Rev., 74, 230, 1948.
2. S. M. SZE, Semiconductor Devices, Physics and Technology, Wiley, New York, 1985.
3. P.L. Dreike, D. M. Fleetwood, D. B. King, D. C. Sprauer, and T. E. Zipperian, “ An Overview of High-Temperature Electronic Device Technologies and Potential Application“, IEEE Transaction Components, Packaging, and Manufacturing Technology-Part A, 17, 594, 1994.
4. J. B. Casady, and R. W. Johnson, “Status of Silicon Carbide (SiC) as a Wide-Bandgap Semiconductor for High-Temperature Applications: A Review”, Solid-State Electronics, 39, 1409, 1996.
5. William F. Smith, Foundations of Materials Science and Engineering, 2nd, McGraw-Hill, 1994.
6. V. E. Chelnokov, and A.L. Syrkin, “ High Temperature Electronics Using SiC: Actural Situation and Unsolved Problems’, Materials Science and Engineering, B46, 248, 1997.
7. G. A. Slack, Journal of applied physics, 35, 3460, 1964.
8. http://nina.ecse.rpi.edu/shur/SiC/sld023.htm
9. T. Paul Chow and Ritu Tyagi,”Wide Bandgap Compound Semiconductors for Superior High-Voltage Unipolar Power Device”, IEEE Transaction on Electron Devices, 41, 8, 1994.
10. http://nina.ecse.rpi.edu/shur/SiC/sld022.htm
11. S. M. SZE, “Semiconductor Devices: Physics and Technology” Wiley, New York, 1985.
12. E. O. Johnson, Physical limitations on frequency and power parameters of transistors, RCA Review, 26, 163, 1965
13. http://nina.ecse.rpi.edu/shur/SiC/sld021.htm
14. D. Wang, Y. Hiroyama, M. Tamura, and M. Ichikawa, Apply Physics Letter, 77, 12, 1846, 2000.
15. M. Cervantes-Contreras, M. Lo´pez-Lo´pez, M. Mele´ndez-Lira, M. Tamura, M. Y. Hiroyama, Journal of Crystal Growth, 227-228, 425, 2001.
16. J. A. Lely: Ber Deut. Keram. Ges., 32, 229, 1995.
17. Yu. M. Tairo, and V. F. Tsvetkov, J. Crystal Growth, 43, 209, 1978.
18. Yu. M. Tairo, and V. F. Tsvetkov, J. Crystal Growth, 52, 146, 1981.
19. Barrett. D. L., “Sublimation Vapor Transport Growth of Silicon Carbide”, Springer Proc. In Physics, 56, Eds. G. L. Harris, M. G. Spencer and C. Y. Yang, pp. 33-99, 1992.
20. Cree Research, Inc., 2801 Meridian Parkway, Durham, NC 27713.
21. Advanced Technology Materials, Inc., 7 Commerce Devices, Danbury, CT 06810-41469.
22. P. G. Neudeck and J. A. Powell, IEEE election Device Letter, 15, 63, 1994.
23. Http://WWW.Cree.com/products/products.htm
24. Liaw, P. and Davis, R. F., J. Electrochem. Soc. 132, 642, 1985.
25. S. Nishino, H. Matsunami and T. Tanaka, Journal of Crystal Growth, 45, 144, 1978.
26. S. Nishino, Y. Hazuki, H. Matsunami, and T. Tanaka, J. Electrochem. Soc., 127, 2674, 1980.
27. J. A. Powell, L. G. Matus, M. A. Kuczmarski, J. Electrochem. Soc., 134, 1558, 1987.
28. J. Graul, E. Wagner, Appl. Phys. Lett., 21, 67, 1972
29. L. S. Hong and C. M. Wu, J. CIChE, 31, 79, 2000.
30. Liaw, P. and Davis, R. F., J. Electrochem. Soc. 132, 642, 1985.
31. P. Rai-Choudhury, H. Formiguchi, and, J. Electrochem. Soc., 116, 1440, 1969.
32. A. J. Learn and I. H. Khan, Thin solid films, 5, 145, 1970.
33. C. J. Mogab and H. J. Leamy, Journal of Applied Physics, 45, 3, 1075, 1974.
34. K. Kim, S. D. Choi, and K. L. Wang, J. Vac. Sci. Technol. B 10(2), 930, 1991.
35. S. Nishino, K. Takahashi, and J. Saraie, Journal of Crystal Growth, 115, 617, 1991.
36. H. Nagasawa and Y. Yamaguchi, Thin Solid films, 225, 230, 1993.
37. H. Nagasawa and Y. Yamaguchi, J. Crystal Growth, 237-239, 1244, 2002.
38. 李志毅,”矽晶基材的碳化緩衝層之成長動力及其後碳化矽結晶薄膜之氣相成長”,國立國立台灣科技大學,碩士論文(1996)。
39. 廖文生,”以矽甲烷/乙炔/氫-化學氣相沉積系統來合成碳化矽薄膜之研究”,國立國立台灣科技大學,碩士論文(1997)。
40. 何尊煒,”以矽甲烷/乙炔化學氣相沉積系統在矽基上的碳化矽異質磊晶薄膜之研究”,國立國立台灣科技大學,碩士論文(1998)。
41. L. S. Hong, Y. Shimogaki, Y. Egashira and H. Komiyama, J. Electrochem. Soc. 139, 3652, 1992.
42. 胡銘顯,”以矽甲烷/乙炔/氫-化學氣相沉積系統在矽基材上合成碳化矽薄膜之研究”,國立國立台灣科技大學,碩士論文(2001)。
43. 汪建民,”材料分析”,民全書局,台北市(87年)。
44. H. Habuka, H. Tsunoda, M. Mayusumi, N. Tate, M. Katayama, J. Electrochem. Soc., 142(9), 3092, 1995.
45. Yoshikatsu Namba, J. Vac. Sci. Technol. A 10(5), 3368, 1992.
46. John C. Vickerman, Surface Analysis-The Principal Techniques, Wiley, New York, 1998.
47. J. Sazajman, J. Liesegang, J. G. Jenkin and R. C. G. Lecky, J. Electron. Spectrosc. 23, 97, 1981.
48. http://electron.lbl.gov/mscdpack/mscdpack.html
49. B. D. Cullity and S. R. Stock, Elements of X-ray diffraction, 3rd, Prentice Hall, New Jersey, 2001.
50. G. Ferro, Y. Monteil, H. Vincent, and V. Thevenot, J. Appl. Phys. 80(8), 4691, 1996.
51. Jun. Yoshinobu and Masakazu Aono, RIKEN Review, 7, 11, 1994.
52. R. Di Felice, C. A. Pignedoli, C. M. Bertoni, A. Catellani, Surface science, 532-535, 982, 2003.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top