跳到主要內容

臺灣博碩士論文加值系統

(98.84.25.165) 您好!臺灣時間:2024/11/10 01:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂佳聰
研究生(外文):Lu Chia Tsung
論文名稱:添加微米級與奈米級碳化矽之鋁基複合材料之熱間擠製特性研究
論文名稱(外文):Study on Hot Extrusion Characteristic of Aluminum Matrix Composites with micro- and nano-size SiC particles
指導教授:向四海
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:81
中文關鍵詞:鋁基複合材料奈米碳化矽顆粒熱間擠製
外文關鍵詞:Aluminum Matrix Compositesnano-SiC particleshot extrusion
相關次數:
  • 被引用被引用:5
  • 點閱點閱:601
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
本研究之主要目的是以粉末冶金方法製造出A6061鋁合金錠及鋁基複合材料錠,進行熱間擠製加工後探討成品之各項特性。鋁基複合材料中,添加微米級與奈米級共三種不同尺寸的碳化矽強化相,分別為102μm、14μm及50nm,每種強化相依體積分率各選用適當的添加量。粉末燒結後之擠製錠再經過420℃與470℃兩種不同之加熱後,進行擠製加工。
添加不同碳化矽之尺寸及不同添加量之擠錠在不同擠製溫度之加熱後,進行擠製加工。擠製出成品經T6熱處理後,於室溫進行硬度與拉伸試驗之機械性質測試,並配合掃描式電子顯微鏡觀察拉伸後的破斷面與金相組織分析來評估添加不同強化相與抗拉強度間的關係。
實驗結果顯示,影響硬度最主要之因素是時效處理之有無,其他強化相的尺寸大小和體積分率之影響則較小;抗拉強度方面,添加奈米顆粒則可明顯提昇母材的機械強度;與傳統添加微米級顆粒強化之鋁基複合材料相比,添加1vol.﹪奈米碳化矽的鋁基複合材其抗拉強度相當於添加10vol.﹪/14μm微米碳化矽之複合材,而且其延性與降伏強度等性質遠優於添加微米強化相之複合材。
The purpose of this paper is to discuss the mechanical properties of A6061 Aluminum and Aluminum Matrix Composites (AMC) under hot extrusion. By adding three different sizes of nano- and micro- SiC particles (102μm, 14μm and 50nm), and each reinforcement is properly measured by volume fraction. After powder sintering, the ingots are extruded under different extrusion temperatures of 420℃ and 470℃.
The ingots with different sizes and quantities of SiC are extruded under different temperatures. The products are treated by T6 heat treatment, then mechanical property tests of hardness and tensile strength are proceeded. Coordinated with the observation of cross-section under SEM after tensile test, the influences of adding different SiC particles on tensile strength of the products are analyzed.
The experimental results reveal that the most important factor affecting the hardness of product in aging treatment. On the other hand, the size of the reinforcements and volume fraction gave less effect. On the tensile strength aspect, adding nano-particles can apparently raise the mechanical strength of extruded product. Comparing with the Aluminum Matrix Composites (AMC) of adding micro SiC particles, the AMC of adding 1vol.﹪50nm SiCp has the same tensile strength with that adding 10 vol.﹪14μm SiCp, and it has better ductility and yield strength than the AMC of adding micro SiCp.
摘 要 I
Abstract II
誌 謝 III
目 錄 IV
圖表索引 VII
第一章 緒論 1
1.1 前言 1
1.2 奈米材料定義 3
1.3 研究動機與目的 4
第二章 文獻回顧 6
2.1 金屬基複合材料的發展與應用 6
2.2 粉末冶金法製造鋁合金及鋁基複合材料 7
2.2.1鋁合金粉末的製造 7
2.2.2鋁合金粉末與SiCp之混合 9
2.2.3 鋁合金粉末之除氣 10
2.2.4 鋁合金之燒結 12
2.2.5 鋁基複合材料燒結之界面性質 14
2.2.6 傳統熱擠製之製程 17
2.3 鋁合金的析出硬化 19
2.4鋁合金之熱處理 20
2.5 鋁基複合材料的強化機構 21
2.5.1 淬火強化 21
2.5.2 Orowan強化和散佈強化 22
2.5.3 晶粒強化(grain strengthening) 23
2.5.4 微結構強化(sub-structure strengthening) 23
2.5.5 加工硬化 24
2.6 金屬基複合材料的機械性質 24
2.7 金屬基複合材料的破壞機構 25
第三章 實驗方法 27
3.1實驗材料 28
3.2實驗設備 30
3.3 粉末冶金製程 33
3.4 擠製負荷的量測 37
3.5 材料成品基本性質分析 37
3.5.1 恆溫時效曲線 38
3.5.2 拉伸實驗 38
3.5.3 微觀組織觀察 39
第四章 結果與討論 40
4.1 粉末外觀之觀察 41
4.2 T6熱處理後之探討 42
4.3 熱間擠製溫度對於鋁基複合材料之影響 46
4.3.1 擠製溫度對擠製負荷之影響 46
4.3.2 擠製溫度對鋁基複合材料外觀之影響 47
4.4 鋁基複合材料之硬度 49
4.4.1未經熱處理之硬度 49
4.4.2 經T6熱處理後之硬度 52
4.5 經T6熱處理後鋁基複合材料之抗拉強度 55
4.5.1室溫拉伸下強化相顆粒大小的影響 56
4.5.2室溫拉伸時強化相體積分率的影響 57
4.6 經T6熱處理後鋁基複合材料之延性 59
4.7 鋁基複合材料破斷面觀察 62
4.8 鋁基複合材料顯微組織之觀察 70
第五章 結論與建議 74
5.1 結論 74
5.2 未來研究方向與建議 75
參考文獻 77
作者簡介 82
1. S. F. Moustafa, Z. Abdel-Hamid and A. M. Abd-Elhay, Meterials Letters, vol.53, pp. 244-249(2002).
2. V. Amigó, J. L. Ortiz and M. D. Salvador, Scripta Materialia, vol. 42, pp.383-388(2000).
3. B. K. Hwu, S. J. Lin and M. T. Jahn, Materials Science and Engineering, vol.A206, pp. 110-119(1996).
4. L. Geng, K. Wu and G. K. Yao, Materials Characterization, vol. 34, pp.227-229(1995).
5. C. Srinivasa Rao and G. S. Upadhyaya, Materials & Design, vol. 16, No. 6, pp.359-366(1995).
6. T.G. Gurganus, R.G. Filliland and W.H. Hunt, Industrial Heating, (2)(1990)46.
7. Olivier Beffort, http://www.empa.ch/abt126, 2001.
8. Automotive Data Sheet, http://www.saffil.com/Pdfs/ammcpi.pdf
9. Y. B. Liu, S. C. Lim, L. Lu and M. O. Lai, Journal of Materials Science, vol.29, pp. 1999-2007(1994).
10.T. W. Clyne and P. J. Withers, An Introduction to Metal Matrix Composites, pp. 318-369(1993).
11.T. S. Srivatsan, I. A. ibrahim, F. A. Mohamed and E. J. Lavernia, Journal of Materials Science, vol. 26, pp. 5965-5978(1991).
12.S.Takajo, ”Recent Developments in the Production Technologies and the Properties of Ferrous Powders,” Review on Powder Metal. And Physical Cera- mics, Vol.4, No.1, pp. 1-58(1990)
13.Gordon Dowson, Powder Metallurgy, Adam Hilger, pp. 25-29(1990).
14.Randall M. German, Powder Metallurgy Science, 2nd, metal Powder Industries Federation, pp. 99-119, 242-295(1994).
15.Randall M. German, Sintering Theory and Practice, John Wiley & Sons, (1996).
16.矢野武夫,混合混練技術,第15~20頁,日刊工業新聞社,1986年二版。
17.Y.W. Kim, W.M. Griffith and F.H. Froes, J.Metals, (8), pp. 27(1875).
18.W.M Griffith, Y.W. Kim and F.H. Froes,“P/M Processing of Al Alloy 7091, ”ASTM, Philadelphia, PA, (1984)
19.G.C. Kuczynski,“Self-Diffusion in Sintering of Metallic Particles,” Metals Trans, pp. 169-178 (1949).
20.Gordon Dowson, Powder Metallurgy, Adam Hilger, pp. 25-29(1990).
21.Randall M. German, Sintering Theory and Practice, 2nd,Metal Powder Industries Federation, pp. 99-119, 242-295(1994).
22.C. G. Levi, G. J. Abbaschian and R.Mehrabian,” Interface Interaction of Aluminumum Alloy-Alumina Fiber Composites,” Metallurgical Transactions A, 9A, pp.697(1978).
23.V. Laurent, D. Chatain and N. Eustathopoulos,” Wettability of SiC by Aluminum and Al-Si Alloys,”Journal of Materials Sicence, 22, pp.244(1978).
24.L. Salvo and M. Suery, Materials Science and Engineering, A177, pp. 173-183(1994).
25.R.E.Reed-Hill and R.Abbaschian, Physical Metallurgy Principles, 3rd, PWS Publish Company(1994).
26.S. T. Mileiko, Metal and Ceramic Based Composites, Elsevier , pp. 413-439(1997).
27.K.Lange,”Handbook of Metal Forming,” (1985).
28.T.Sheppard,”Extrusio of A2024 Alloy,” Materials Science and Technology, pp. 430(May 1993).
29.熊建華,”The Relationship Between Microstructure and Mechanical Properties of Particulate Reinforced Metal Matrix Composite.”,英國牛津大學博士學位論文(1994)。
30.金重勳,熱處理,第472~475頁,台南,復文書局,民國七十七年。
31.R. J. Arsenault and N. Shi, Materials Science and Engineering, vol. 81, pp.175(1986).
32.M. Taya and K. E. Ludy, Acta Metallurgical, vol. 39, pp. 73(1991).
33.F. J. Humphreys,”The Nucleation of Recrystallization at Second Phase Particles in Deformed Aluminium,” Acta Metallurgica, pp.1323(1977).
34.R. J. Arsenault, ”Strengthening Mechanisms in Particulate MMC : Remarks on a Paper by Miller and Humphreys,” Scripta Metallurgicaet Materialia, pp.2617(1991).
35.S. V. Kamat, A. D. Rollett and J. P. Hirth, Scripta Metallurgical, vol. 25 , pp. 27(1991).
36.李秉璋,「陶瓷顆粒強化鋅銅鋁基複合材料研究」,交通大學機械所碩士論文,民國81年。
37.S. S. Kamat, J. P. Hirth and R. Mehrabian, “Mechanical Properites of Particulate-Reinforced Aluminum-Matrix composites,” Acta Metallurgica, pp.2395(1989).
38.S. J. Harris, ”Cast Metal Matrix Composites,” Material Science and Technoloyg, pp.231(1988).
39.J. K. Shang and R. O. Rithie,”On The Particle-Size Dependence of Fatigue-Crack Propagation Thresholds in Sic-Particulate-reinforced Aluminum-Alloy Composites: Role of Crack Closure and Crack Trapping,” Acta metallurgica, Vol.37, pp.2267(1989).
40.林以梓,「SiCp/A356複合材料之製造及機械性質研究」,清華大學材料所碩士論文,民國80年。
41.康永昌,「2014鋁合金及鋁基複合材料粉末冶金製程氧化物雜質對機械性質影響之研究」,台灣大學材料所碩士論文,民國87年。
42.蘇裕祥,「熱循環對SiCp/6061鋁基複合材料機械性質影響之研究」,台灣大學材料所碩士論文,民國86年。
43.J. C. Ehrstrom and W. H. Kool, “Procuction of Rapikly Solidified Al/SiC Composites,” Journal of Materials Science, Vol.23, pp.3195(1988).
44.A. P. Divecha, S. G. Fishman and S. D. Karmaker,”Silicon Carbide Reinforced Aluminum a Formable Composite,” Journal of Metals, pp.12 (September 1981).
45.B. Roebuck,”Fractography of a SiC Particulate Reinforced Aluminum Metal Matrix Composite,” Journal of Materials Science Letters 6, pp.1138(1987).
46.Y. W. Kim, W. M. Griffith and F. H. Froes, J. Metals, (8)(1985)27.
47.Kapoor Rjeev.,Vecchio Kenneth S.,”Deformation Behavior and Failure Mechanisms in Particulate Reinforced 6061Al Metal-Matrix Composite,” Composites Engineering, Vol.5(1995).
48.武韡,「鋁基粉末複合材料知最佳熱間擠製加工條件之探討」,台灣科技大學機械工程系碩士論文,民國89年。
49.Shyong. J. H., Huang. C. C.,”The Microstructure and Gardness Characteristic SiCp Reinforced Aluminum Alloys,”Department of Machanical Engineering Chung Cheng Institute of Technology(1995).
50.Y. Flom and R.J. Arsenault, Acta Metall., Vol.37, pp. 2416(1989).
51.V. K. Varma, S. V. Kamat, and V. V. Kutubarao,Mater.Sci. and Tech., pp.93(2001).
52.Z. Y. Ma, Y. L. Li, Y. Liang, F. Zheng, J. Bi and S. C. Tjong, Mater. Sci. Eng.A219, pp. 229-231(1996).
53.Z. Y. Ma, S. C. Tjong, Y. L. Li, and Y. Liang, Mater. Sci. Eng. A225, pp.125-134(1997).
54.Z. Y. Ma, S. C. Tjong,and Y. L. Li, Compos. Sci. Technol. pp. 263-270(1999).
55.M.Gupia,M.K.Surappa and S.Qin, Journal of Materials Processing Technology, vol. 67, pp. 94-99(1997).
56.M. Besterci, M. Slesar and G. Jangg, Powder Metall Inter. Vol.24, pp. 27-32 (1992).
57.翁炳志,「6000系鋁合金基複合材料之強化和顯微破壞之研究」,台灣大學材料科學與工程研究所博士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top