跳到主要內容

臺灣博碩士論文加值系統

(44.192.67.10) 您好!臺灣時間:2024/11/09 17:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳英挺
研究生(外文):Chen, Ying-Ting
論文名稱:應用模糊滑動模控制於旋轉撓性圓盤之振動控制
論文名稱(外文):Vibration Control of a Rotating Flexible Circular Disk by Fuzzy Sliding Mode Control
指導教授:黃昌群
指導教授(外文):Huang, Chang-Chiun
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:高分子工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:69
中文關鍵詞:錠子橫向振動控制超溢觀測超溢模糊滑動控制
外文關鍵詞:disktransverse vibrationcontrol spolloverobservation spilloverfuzzy sliding mode control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
中心握持的旋轉圓盤是渦輪機、迴轉輪、圓鋸、磁碟機及光碟機之基本組件,因旋轉慣性作用所引起之橫向振動的控制是很重要的工作,此橫向振動是屬於無限維系統之振動且包含無限個振動模。在消除此類的振動上,大部份的文獻皆保留數個低頻振動模去建立一有限維系統,利用此經過降階的系統設計控制器時容易發生控制超溢與觀測超溢的現象。本文採取主動式控制系統,利用致動器來消除其橫向振幅,所提的控制法則在希望控制器具有抗雜訊干擾與系統參數變動之能力下設計模糊滑動控制,並在輸出迴授模式下,藉由感測器量測來不斷切換系統的控制律,迫使系統的行為落於事先設計的滑動面上,這樣的控制器設計能有效的防止因控制或觀測超溢所造成系統的不穩定性,本文在模擬上選取二十個模態數所構成的系統,並用針對十個模態數所設計出來的控制器來探討提高階數後的系統對系統響應的影響且在狀態變數未知的情況加入觀測器來估測系統狀態,最後在改變感測器與致動器位置的情況下觀察其圓盤的振動情形,經模擬結果證實此控制方法對易導致控制超溢及觀測超溢的撓性振動系統能有效的消除旋轉圓盤的橫向振幅。
A centrally-clamped rotating flexible circular disk is the basic machine element of steam and gas turbines, grinding wheels, circular saws, computer memories, and CD-ROM. It is an important task to control the transverse vibration of a circular disk arising from the inertia effect of rotating motion.The vibration of a flexible circular disk has an infinite number of vibration modes. To eliminate the vibration, most papers used a finite dimensional system by retaining some low frequency vibration modes to design a controller. As a result, truncated high frequency vibration modes may lead to control spillover and observation spillover. In this study, an active control system is utilized to eliminate the transverse vibration. We adopt a fuzzy sliding control with the ability to handle noise disturbance and system parameters variation. The control law is switched continuously so that the system behavior gets close to the sliding surface. The controller can avoid system instability caused by control or observation spillovers. Furthermore, we choose the system’s ten vibration modes for controller design and twenty vibration modes to formulate the system model. Since state variables are not available, the full-order observer is designed to estimate the state variables. The simulation results show that our proposed control method can eliminate transverse vibration of a rotating disk by peacing a sensor and actuator at different position.
目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
圖表索引 VI
第1章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 1
1.3 研究步驟 3
第2章 系統模式推導 5
2.1 旋轉撓性圓盤模型之建立 5
2.2 旋轉撓性圓盤橫向振幅動態方程式之推導 6
2.3 特徵值及特徵函數 10
2.4 旋轉撓性圓盤模組分析 13
2.5 旋轉撓性圓盤之狀態方程式 15
第3章 控制器的設計 17
3.1 MIMO系統迴授線性化 17
3.2 滑動控制器設計 20
3.3 模糊滑動控制器的設計 24
3.3.1 模糊滑動控制簡介 24
3.3.2 滑動控制的優點與缺點 25
3.3.3 模糊滑動模式控制器的設計 26
3.3.4 解模糊化(Defuzzifier) 26
3.3.5 模糊分割 27
3.3.6 定義歸屬函數 28
3.3.7 控制法則 29
3.4 全維狀態觀察器設計 32
第4章 模擬結果與分析 34
4.1 系統參數設定 34
4.2 旋轉圓盤之滑動控制 40
4.3 模擬一:系統保留十個模態,系統狀態為未知下之滑動控制 42
4.4 模擬二:系統保留十個模態之模糊滑動控制 49
4.5 模擬三:系統保留二十個模態之模糊滑動控制 52
4.6 模擬四:系統保留二十個模態,改變感測器位置 59
4.7 結果與討論 64
第5章 結論 66
參考文獻 67
參考文獻
[1] Benson, R. C.; Bogy, D. B., “Deflection of a Very Flexible Spinning Disk Due to a StationaryTransverse Load”, Journal of Applied Mechanics, Transactions ASME, Vol. 45, No. 3, pp. 636-642, 1978.
[2] Hutton, S. G., Chonan, S., and Lehmann, B. F., “Dynamic Response of a Guided Circular Saw”, Journal of Sound and Vibration, Vol. 112, No. 3, pp. 527-539, 1987.
[3] Shen, Y., “Vibration of Flexible Rotating Disks”, Shock and Vibration Digest”, Vol. 32, No. 4, pp. 267-272, 2000.
[4] Barasch, S., and Chen, Y., “On the Vibration of a Rotating Disk”, Journal of Applied Mechanics, Vol. 39, No. 4, pp. 1143-1144, 1972.
[5] Vogel, S. M., and Skinner, D. W., “Natural Frequencies of Transversely Vibrating Uniform Annular Plates”, Journal of Applied Mechanics, Vol. 32, No. 4, pp. 926-931, 1965.
[6] Soni, S. R., and Amba-Rao, C. L., “On Radially Symmetric Vibrations of Orthotropic Non-Uniform Disks Including Shear Deformation”, Journal of Sound and Vibration, Vol. 42, No. 1, pp. 57-63, 1975.
[7] Rao, S. S., and Prasad, A. S. “Vibration of Annular Plates Including the Effect of Rotatory Inertia and Transverse Shear Deformation”, Journal of Sound and Vibration, Vol. 42, No. 3, pp. 305-324, 1975.
[8] Kirkhope, J., and Wilson, G. J., “Vibration of Circular and Annular Plates Using Finite Elements”, Journal of Sound and Vibration, Vol.
[9] Mota Soares, C. A., and Petyt, M., “Finite Element Dynamic Analysis of Practical Discs”, Journal of Sound and Vibration, Vol. 61, No. 4, pp. 547-560, 1978.
[10] Ramaiah, G. K., “Natural Frequencies of Spinning Annular Plates”, Journal of Sound and Vibration, Vol. 74, No. 2, pp. 303-310, 1981.
[11] Nigh, G. L., and Olson, M. D., “Finite Element Analysis of Rotating Discs”, Journal of Sound and Vibration, Vol. 77, No. 1, pp. 61-78, 1981.
[12] Ellis, R. W., and Mote, C. D., Jr., “Feedback Vibration Controller for Circular Saws”, Journal of Dynamic Systems, Measurement, and Control, Vol. 101, No. 1, pp. 44-49, 1979.
[13] Radcliffe, C. J., and Mote, C. D., Jr., “Identification and Control of Rotation Disk Vibration”, Journal of Dynamic Systems, Measurement, and Control, Vol. 105, No. 1, pp. 39-45, 1983.
[14] Meirovitch, L., and Baruh, H., “A Comparison of Control Techniques for Large Flexible Systems”, Journal of Guidance and Control, Vol. 6, No. 4, pp. 302-310, 1983.
[15] Fung, R. F., “Vibration and Variable Structure Control with Integral Compensation in a Non-Constant Rotating Disk System”, Journal of Sound and Vibration, Vol. 199, No. 2, pp. 223-236, 1997.
[16] Kuo, C. Y., and Huang, C. C., “Active Control of Mechanical Vibrations in a Circular Disk”, Journal of Dynamic Systems, Measurement, and Control, Vol. 114, No. 1, pp. 104-112, 1992.
[17] Utkin, V. I., “Sliding Mode Control Design Principles and Applications to Electric Drives”, IEEE Trans. Industrial Electronics, Vol. 40, No. 1, pp. 23-36, 1993.
[18] Wu, J. C., and Liu, T. S., “A Sliding-Mode Approach to Fuzzy Control Design”, IEEE Trans. Control Systems Technology, Vol. 4, No. 2, pp. 141-151, 1996.
[19] Liu, T. H., and Lin, M. T., “Fuzzy Sliding-mode Controller Design for A Synchronous Reluctance Motor Drive”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, No. 3, pp. 1065-1076, 1995.
[20] Ting, C. S., Li, T. H., and Kung, F. C., “An Approach to Systematic Design of Fuzzy Control System”, Fuzzy Sets and Systems, Vol. 77, No. 2, pp. 151-166, 1996.
[21] Lee, T. T., Tu, K. Y., and Wang, W. J., “Fuzzy Logic Controller Designed as a Suction Controller”, Fuzzy Sets and System, Vol. 91, No. 3, pp. 305-317, 1997.
[22] George, C., Cosimo, G., and Basilio, B., “Fuzzy Controller Synthesis Using Sliding Mode Approach”, Proc 1994 1 Int Jt Conf Nafips Ifis Nasa, pp. 255-258, 1994.
[23] 陳元智, “非自主性之適應性系統滑動控制”, 國立台灣科技大學機械系碩士學位論文, 2001.
[24] 林俊良, “控制系統數學”, 全華科技股份有限公司, 1997.
[25] Ogata, K., “Modern Control Engineering”, Prentice-Hall, 1990.
[26] Lewis, F. L., “Applied Optimal Control and Estimation”, Prentice-Hall, 1992.
[27] 楊憲東, 葉芳柏, “線性與非線性 控制理論”, 全華科技圖書股份有限公司, 1997.
[28] Huelsman, L. P., and Allen, P. E., “Introduction to the Theory and Design of Active Filter”, McGraw-Hill Book Company, 1980.
[29] Ogata, K., “Designing Linear Control Systems with MATLAB”, Prentice-Hall, 1994.
[30] 趙清風, “進階自動控制設計-使用MATLAB程式語言”, 全華科技圖書股份有限公司, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top