(3.230.143.40) 您好!臺灣時間:2021/04/21 06:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱愛倫
研究生(外文):Ai-Lun Chiu
論文名稱:應用資料探勘分析顧客行為改變
論文名稱(外文):Application of Data Mining Techniques to Detect the Changes of Customer Behavior
指導教授:陳穆臻陳穆臻引用關係
指導教授(外文):Mu-Chen Chen
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:商業自動化與管理研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:89
中文關鍵詞:資料探勘關聯法則消費者行為改變顧客行為變數規則比較
外文關鍵詞:Data MininigAssociation RuleCustomer Behavior RulesRule MatchingRFM
相關次數:
  • 被引用被引用:7
  • 點閱點閱:688
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據80/20 法則,企業中80%收益,來自於20%的客戶,且開發一個新顧客的成本,高於維持住一個顧客的5倍,因此如何應用有效的顧客關係管理,維持住對企業最有價值的顧客,成為在變動時代的今天,最重要的議題。而要維持顧客,最重要的是要了解消費者行為,並針對其消費行為改變,做出即時且適當的回應,以滿足顧客的需求。過去在消費者的行為研究上,普遍藉由統計分析來分析消費者行為,然而,統計分析需符合許多假設,例如:資料需為常態,且資料的收集僅只於特定樣本。反之,在電腦化的時代,企業的顧客及交易資料庫中,其實蘊藏了許多有用的知識,因此,本研究運用資料探勘 (Data Mining)技術,挖掘資料庫中有用的資訊;資料探勘技術,不需符合傳統統計假設,且所收集大量且為每日的交易資料,因較適合分析顧客行為改變。因此,本研究即針對顧客及交易資料庫,透過資料轉換技術,以顧客行為變數區別對企業不同價值的市場區隔,並透過資料探勘中之關連法則 (Association Rule),挖掘出不同期間下之顧客消費行為規則,再藉由規則比較指標之計算,以偵測及預測消費行為改變;最後,本研究建構一線上之消費行為改變查詢系統,以即時回饋所得之消費者行為及行為改變規則。
In general, 80 percent of profit is generated by 20 percent of customers in business (80/20 rule). Therefore, building up an effective relationship with the valuable customers has become more necessary for businesses to remain the competitive advantage. Hence, to detect and to predict the customer behaviors are important issues to maintain a successful relationship with customers. Further, detecting the change of customer behavior makes companies to actively intervene and timely win customers.
From the previous studies of consumer behavior, questionnaire is the most conventional manner for detecting the buying behavior of customer. Furthermore, several statistical methods such as Bayesian theory and principal component analysis (PCA) were also applied to model the consumer behavior. Even though these approaches can be applied to predict the customer behavior, there still have several limitations. For instance, the parameter distribution must be normal. Hence, data mining techniques, which do not have to make any preliminary or additional assumptions for data have been proposed to model the association structures of customer behavior.
This study attempts to apply the association rule mining to find the relationship between customer profile and products bought by customers. Then, to model the change of customer behavior by compare to these rules, which are generated from different periods of time. Consequently, the rule matching measures are developed to detect the change of customer behaviors. Finally, an on-line query system was developed to display the results of customer behavior rules.
目次
摘要 iii
Abstract iv
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 3
1.4 研究流程與架構 3
第二章 文獻探討 6
2.1 顧客關係管理 6
2.2 消費者行為 9
2.2.1 消費者行為研究 10
2.2.2 消費者行為改變之相關研究 14
2.3 顧客行為變數 15
2.4 資料探勘 18
2.5 關聯法則 21
第三章 探勘消費行為改變方法 24
3.1 概述 24
3.2 資料前處理及轉換 25
3.3 顧客行為變數 27
3.4 關聯法則演算法 33
3.4.1 演算法流程說明 33
3.4.2 簡例說明 37
3.5 消費行為規則比較 39
3.5.1 問題定義 40
3.5.2 消費者行為改變指標 42
第四章 實作結果 54
4.1 資料來源與資料選取 54
4.2 資料前處理與轉換 56
4.3 顧客價值分群 60
4.4 關聯法則分析 65
4.5 消費者行為規則改變 68
4.6 消費行為改變之線上查詢系統 74
第五章 結論與未來研究建議 84
5.1 研究結果 84
5.2 未來研究建議 85
參考文獻 87
[1] 流通快訊, 2002, http://www.distributionnews.com/index.php.
[2] Massnick, F., 1997, The Customer is CEO: How to Measure What Your Customers Want and Make Sure They Get It. Amacom.
[3] Reichheld, F. F., and Sasser, W.E., 1990, Zero defections: quality comes to services. Harvard Business Review, 105-111.
[4] Schiffman, L. G., and Leslie, L., 2001, Consumer Behavior, Pro-Ed Publishing Company.
[5] Berry, M. J. A. and Linoff, G. S., 1997, Data Mining Techniques: for marketing, sales, and customer support. New York: John Wiley & Sons, Inc.
[6] Liu, B., Hsu, W., Han, H. S., and Xia, Y., 2000, Mining Changes for Real-Life Applications, Second International Conference on Data Warehousing and Knowledge Discovery, 337-346.
[7] Kim, E., Kim, W., and Lee, Y., 2001, Combination of Multiple Classifiers for the customer’s purchase behavior prediction, Decision Support Systems,167-175.
[8] Song, H. S., Kim, J. K., and Kim, S. H., 2002, Mining the change of customer behavior in an internet shopping mall, Expert System with Applications, 21, 157-168.
[9] Kahan, R., 1998, Using Database Marketing Techniques to Enhance Your One-to-One Marketing Initiatives. Journal of Consumer Marketing, 15, 491-493.
[10] Bult, J. R., and Wansbeek, T., 1995, Optimal Selection for Direct Mail. Marketing Science 14 (4), 378-381.
[11] Fournier, S., and Dobscha, S., 1998, Preventing the Premature Death of Relationship Marketing, Harvard Business Review, 76.
[12] Couldwell, C. 1998, A Data Day Battle. Computing, 21, 64-66.
[13] Kalakota, R., and Marcia, R., 1999, Roadmap for Success, e-Business, 117.
[14] Winer, R. S., 2001, A Framework for Customer Relaitonship Management, California Management Review, 43(4), 89-102.
[15] Frawley, A., and Thearling, K., 1999, Increasing Customer Value by Integrating Data Mining and Campaign Management Software, Database Management, 49-53.
[16] Han, J., and Kamber, M., 2001, Data Mining: Concepts and Techniques, San Francisco: Morgan Kaufmann.
[17] Engel, J. F., Kollat, D. T., and Blackwell, R. D., 2001, Consumer Behavior.
[18] Richtel, M., 1998, On-Line Polling is More Business than Science, The New York Times, E3.
[19] Sudman, S., and Blair, E., 1999, Sampling in the Twenty-First Century, Journal of the academy of marketing science 27, 269-277.
[20] Genti, V., Gehrke, J., and Ramakrishnan, R., 1999, A Framework for Measuring Changes in Data Characteristics, Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 126-137.
[21] Han, J., and Kamber, M., 2001, Data Mining: Concepts and Techniques San Francisco, Morgan Kaufmann Publishers, 200-207.
[22] Liu, B., Hsu, W., Mun, L. F., and Lee, H. Y., 1999, Finding Interesting Patterns Using User Expectations, IEEE Transactions on Knowledge and Data Engineering, 11(6), 817-832.
[23] Silberschatz, A., and Tuzhilin, A., 1996, What Makes Patterns Interesting in Knowledge Discovery Systems, IEEE Transactions on Knowledge and Data Engineering, 8(6), 970-974.
[24] Hughes, A. M., 1994, Strategic Database Marketing, Chicage: Probus Publishing.
[25] Stone, B., 1995, Successful Direct Marketing Methods, Lincolnwood, IL:NTC Business Books, 37-59.
[26] Miglautsch, J., 2001, Thoughts on RFM Scoring. International Society for Strategic Marketing. ISSM Electronic Journal, 1-7.
[27] Goodman, J., 1992, Leveraging the Customer Database to your Competitive Advantage, Direct Marketing, Dec, 26-27.
[28] Fayyad U., Piatetsky-shapiro G., and Smyth P., 1996, From data mining to knowledge discovery in databases. AI Magazine, 37-54.
[29] Hruschka, H., 1993, Determining Market Response Functions by Neural Network are Universal Approximators, Neural Network, 27-35.
[30] Dasgupta, C. G.., Despensa, G. S., and Ghose, S., 1994, Comparing the Predictive Performance of a Neural Network Model with Some Traditional Market Response Model. International Journal of Forecasting, 235-244.
[31] Fish, K. E., James, H. B., and Milam, W.A., 1995, Artificial Neural Network: A New Methodology for Industrial Market Segmentation, Industrial Marketing Management, 431-438.
[32] Cabena, P., Hadjinian, P., Stadler, J. V., and Zanasi., A. 1998, Discovering Data Mining from Concept to Implementation. Pretice Hall PTR, Upper Saddle River.
[33] Agrawal, R., Imielinski, T., and Swami, A., 1993, Mining association rules between sets of items in large databases, ACM SIGMOD Coference Washington DC, USA, 254-259.
[34] Agrawal, R., Imielinski, T., and Swami, A., 1993b, Database Mining: A Performance Perspective, IEEE Trans. Knowledge and Data Engineering 5(6): 914-925.
[35] Agrawal, R., Srikant, R., and Vu, Q., 1997, Mining Association Rules with Item Constraints, Proceedings of the Third Internation Conference on Knowledge Discovery and Data Mining (KDD-97).
[36] Agrawal, C. C., and Sun, Z., 1998, Online Algrithms for Finding Profile Association Rules, Proceedings of the 1998 ACM CIKM International Conference on Information and Knowledge Management.
[37] Henderson, B. D., 1967, The Origins of Strategy. Harvard Business Review.
[38] Poter, M. E., 1980, Competitive Strategy, Free Press.
[39] Marcus, C., 1998, A Practical Yet Meaningful Approach to Customer Segmentation, Journal of Consumer Marketing, 15(5), 494-504.
[40] Agrawal, R., and Psila, G.., 1995, Active Data Mining, Proceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD-95), 3-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔