(34.239.150.57) 您好!臺灣時間:2021/04/19 00:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許智傑
研究生(外文):HSU CHIH CHIEH
論文名稱:高層建築設計風載重之比較研究
論文名稱(外文):Study of High-Rise Buildings'' Design Wind Load
指導教授:鄭啟明鄭啟明引用關係
指導教授(外文):Cheng, Chii-Ming
學位類別:碩士
校院名稱:淡江大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:137
中文關鍵詞:順風向風力橫風向風力扭轉向風力組合風力
外文關鍵詞:Alongwind wind loadsAcrosswind wind loadsTorsional wind loadsWind loads combination
相關次數:
  • 被引用被引用:2
  • 點閱點閱:202
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:2
針對風力來說,當建築物達到柔性建物條件時,建築物受力情況就會由地震力掌控改為由風力掌控。隨著頻率降低,柔性建物與建物環境之風場產生共振現象,而產生較大之風力,若設計不當容易使建築物由於位移過大而產生建物破壞與人體不舒適感。因此適當的估算設計風力實為結構工程師所不可或缺的過程。
本文以世界上比較有名的風力規範,例如:美國、日本、加拿大與澳洲規範,針對順風向、橫風向、扭轉向之設計風力及順、橫風向風力組合做研究比較,而國內規範則採用建築物最新風力規範為1996年研究報告。
順風向風力載重部份,主要是由擾動風力所引起,其分類為適用範圍、基本風速、地況分類、重要因子、風速剖面與風力分配、風力(壓)係數、紊流強度與長度尺度、風速頻譜及陣風因子;橫風向風力載重部份,由於風接觸到鈍體之後產生了分離流現象,渦旋離散效應在橫風向產生間歇性側向負壓,導致在橫風向產生振動效應,其分類為適用範圍、風力頻譜及橫風向風力載重公式;扭轉向風力載重部份,建築物受風之後會產生扭轉向之振動現象,主要是由於分布在迎風面、背風面及側向之非對稱風壓所引起。此現象發生之原因為擾動風速與建物尾跡的渦旋效應,其分類為適用範圍及扭轉向風力載重公式。
另外,對於順、橫風向之風力組合部份,有向量型態上之純量組合、橢圓型態之向量組合及多邊形型態之向量組合等,可作為風力組合之計算模式。
本文針對上述幾種規範之範疇,針對適合國內工程實務上的應用及不違背風工程理論,比較其差異性,並作為國內設計風力規範架構之依據。
For slender high-rise buildings, flexible and dynamically sensitive, wind effects are likely to be the dominant factor on buildings’ lateral design loading. Decreasing fundamental frequency, flexible structure resonated with wind field that surrounded the building, and resulted stronger wind load. It’s necessary for structural engineering to evaluate the proper design wind load.
This research project performs in-depth study on several national wind codes among them are Taiwan, United States (ANSI), Japan(AIJ), Canada(NBC)and Australia(SAA). All these wind codes have some variations on the articles regarding alongwind, acrosswind and torsional wind loads. Alongwind design wind load is mainly caused by incident turbulence in the approaching wind. The primary affecting parameters include: basic wind speed, terrain subcategories, wind speed profile, wind force coefficient, wind force spectrum, gust wind factor and alongwind load formula. Acrosswind design wind load is mainly induced by vortex shedding in the wake of building. The primary affecting parameters include: acrosswind force spectrum and Acrosswind load formula. Torsional design wind load is mainly generated by asymmetric wind pressure distribution on building surface. The calculation proceedure is similar to the acrosswind design loads.
As for the wind loads combination, there are several existing models, such as scalar combination, elliptical combination and polygon combination, to be taken into consioderation. The primary difference among those models is the degree of correlation between along and across wind load.
第一章 緒 論 ................................1-1
1-1 前言 ................................1-1
1-2 研究動機 ................................1-2
1-3 研究項目 ................................1-3
1-4 本文架構 ................................1-3
第二章 文獻回顧 ................................2-1
2-1 順風向風力 ................................2-1
2-2 順風向紊流擾動風速頻譜 ................................2-2
2-3 橫風向風力 ................................2-4
2-4 扭轉向風力 ................................2-5
2-5 風力組合 ................................2-5
第三章 理論背景 ................................3-1
3-1 大氣邊界層流場之特性 ................................3-1
3-2 基本風速與迴歸期 ................................3-1
3-3 平均風速剖面 ................................3-2
3-3-1 對數率 ................................3-2
3-3-2 指數率 ................................3-3
3-4 紊流特性 ................................3-3
3-4-1 紊流強度 ................................3-4
3-4-2 紊流長度尺度 ................................3-4
3-4-3 擾動風速頻譜 ................................3-5
3-5 量測時間轉換 ................................3-6
3-6 建築物風力計算 ................................3-7
3-6-1 點狀結構物(Point-like Structure) ................................3-7
3-6-2 線狀結構物(Line-like Structure) ................................3-8
3-6-3 結構反應(Structural response) ................................3-10
第四章 風力規範 ................................4-1
4-1 前言 ................................4-1
4-2 順風向風力載重公式之比較 ................................4-2
4-2-1 順風向風力載重公式之適用範圍 ................................4-2
4-2-2 基本風速 ................................4-3
4-2-2-1 基本風速之迴歸期 ................................4-3
4-2-2-2 基本風速之量測時間 ................................4-4
4-2-3 地況分類 ................................4-4
4-2-4 重要因子 ................................4-5
4-2-5 風速剖面與風力分配 ................................4-6
4-2-6 風力(壓)係數 ................................4-7
4-2-7 紊流強度與長度尺度 ................................4-8
4-2-7-1 紊流強度 ................................4-8
4-2-7-2 長度尺度 ................................4-9
4-2-8 風速頻譜 ................................4-10
4-2-9 陣風因子 ................................4-12
4-2-10 順風向風力載重公式之比較 ................................4-21
4-3 橫風向風力載重公式之比較 ................................4-23
4-3-1 橫風向風力載重公式之適用範圍 ................................4-23
4-3-2 橫風向風力頻譜 ................................4-24
4-3-3 橫風向風力載重公式 ................................4-25
4-4 扭轉向風力載重公式之比較 ................................4-26
4-4-1 扭轉向風力載重公式之適用範圍 ................................4-26
4-4-2 扭轉向風力載重公式 ................................4-27
4-5 順橫風向風力組合 ................................4-29
4-5-1 順橫風向風力組合 ................................4-29
4-5-2 向量型態上之純量組合 ................................4-29
4-5-3 橢圓型態之向量組合 ................................4-30
4-5-4 多邊形型態之向量組合 ................................4-32
第五章 分析結果與討論 ................................5-1
5-1 風速頻譜之探討 ................................5-2
5-2 順風向風力載重 ................................5-3
5-2-1 紊流強度與紊流長度尺度 ................................5-3
5-2-2 風速剖面與風力分配 ................................5-3
5-2-3 陣風因子 ................................5-5
5-2-4 順風向設計風力 ................................5-5
5-3 橫風向風力載重 ................................5-6
5-3-1 橫風向風力頻譜 ................................5-6
5-3-2 橫風向設計風力 ................................5-7
5-4 扭轉向風力載重 ................................5-8
5-5 順、橫風向風力組合 ................................5-9
5-5-1 風力比值 ................................5-9
5-5-2 風力組合 ................................5-9
第六章 結論與建議 ................................6-1
6-1 結論 ................................6-1
6-2 建議 ................................6-2
參考文獻 ................................R-1
附錄A ANSI/ASCE 7-02風速剖面 ................................A-1
附錄B AIJ1996橫風向公式 ................................B-1
附錄C 橢圓型態之向量組合之公式推導 ................................C-1
1. Davenport, A. G., 1967, “Gust loading factors”, Journal of Structural Division, Proceedings of ASCE, 93, pp.11-34.
2. Solari, G., 1988, “Equivalent wind spectrum technique: theory and application”, Journal of Structural Engineering, 114(6), pp.1303-1323.
3. Simiu, E., and Scanlan, R. H., “Wind Effect on Structures”, Third Edition, 1996.
4. Von Karman, T. “Progress in the statistical Theory of Turbulence ,” Proceedings of the National Academy of Science, Washington, D. C., 1948, pp. 530-539.
5. Davenport, A. G..”The Spectrum of Horizatal Gustiness near the Ground in High Winds” ,Journal of the Royal Meteorological Society, Vol. 87, 1961, pp194-211.
6. Harris, R. I., “The Nature of Wind,” The Modern Design of Wind-Sensitive Structures, Construction Industry Research and Information Association, London, U.S., 1971.
7. Kaimal, J. C. “Spectral Characteristics of Surface Layer Turbulence, ” Journal of the Royal Meterological Socity, Vol. 98, 1972, pp. 563-589.
8. 陳鶴修,”台灣地區風速頻譜之初步研究”,國立台灣科技大學營建工程技術學系碩士論文,民國87年6月。
9. 李嘉晃,” 台灣地區風速能譜之研究與結構反應分析”,國立海洋大學河海工程學系碩士論文,民國86年6月。
10. Solari, G., 1993, “Gust Buffeting. Ⅱ:Dynamic Alongwind Response”, J. of Structural Engineering,119(2), pp.384-398.
11. Simiu, E., 1974, “Wind spectra and dynamic alongwind response.”, J. Struct. Div., ASCE, 100(9), pp.1897-1910.
12. Melbourne, W. H., 1975, “Cross-wind Response of Structures to wind action”, 4th International Conference on Wind Effects on Buildings and Structures, Cambridge University Press, London.
13. Saunders, J. W. and Melbourne, W. H., 1975, “Tall Rectangular Building Response to Cross-wind Excitation,” Proc. 4th International Conference on Wind Effects on Buildings and Structures, Cambridge University Press, pp. 369-379.
14. Kwok, K. C. S. and Melbourne, W. H., 1981, “Wind-induced Lock-in Excitation of Tall Structures”, J. of The Structural Division, ASCE, V 107, No ST1, January, pp. 57-72.
15. Holmes, J. D., 1987, “Mode shape corrections for dynamic response to wind”, Engineering Structures, 9, pp.210-212.
16. Marukawa, H., Ohkuma, T., and Momomura, Y., 1983, “Across-wind and Torsional Acceleration of Prismatic High Rise Buildings”, Journal of Wind Engineering and Industrial Aerodynamics, 13.
17. Kareem, A., 1989, “Fluctuating wind loads on buildings”, Journal of Engineering Mechanics Division, ASCE, 108, pp.1086-1102.
18. Fujii, K., Hibi, K., Otsuki, T. and Ueda, H., 1987, “measurements of fluctuating pressures on square cross section buildings”, Journal of Wind Engineering, JAWE, 31, pp.1-11(in Japanese).
19. Tamura, Y., Kawai, H., Uematsu, Y., marukawa, H., Fujii, K. and Taniike, Y., 1996, “Wind load and wind-induced response estimations in the Recommendations for Loads on Buindings, AIJ 1993”, Engineering Structures, 18(6), pp.399-411.
20. Tamura, Y., Ohkuma, T., Okada, H. and Kanda, J., 1999, “Wind loading standards and design criteria in Japan”, Journal of Wind Engineering and Industrial Aerodynamics, 83, pp.555-566.
21. Marukawa, H., Ohkuma, T. and Momomura, Y., 1992, “Across-Wind and Torsional Acceleration of Prismatic High Rise Buildings”, Journal of Wind Engineering and Industrial Aerodynamics, 41-44, pp.1139-1150.
22. Melbourne, W. H., 1975, “Probability distributions of response of BHP house to wind action and modal comparisons”, Journal of Industrial Aerodynamics, 1(2), pp.167-175.
23. Vickery, B. J., and Basu, R. I., 1984, “The response of reinforced concrete chimneys to vortex shedding”, Engineering Structures, 6, pp.324-333.
24. Solari, G., and Pagnini, L. C., 1999, “Gust buffeting and aeroelastic behavior of poles and monotubular towers”, Journal of Fluid and Structures, 13, pp.877-905.
25. AS 1170.2, 1989, The Australian Wind Loading Standard, SAA.
26. Ballio, G. and Solari, G. 1992 “The park tower in Milan”, Costruzioni Metalliche, 3, p.141-164.
27. Ballio, G. and Solari, G. 1992 “A steel structure of 1933 in the light of past and present knowledge”, Costruzioni Metalliche, 4, p.211-233.
28. Holmes, J. D., Schafer, B. L. and Banks, R. W. 1992 “wind-induced vibration of a large broadcasting tower”, Journal of Wind Engineering and Industrial Aerodynamics, 41-44, p.2101-2110.
29. ASCE7-98, 2000, Minimum Design Loads for Buildings and Other Structures, ASCE.
30. AS/NZS1170.2, 2002, Australian/New Zealand Standard, Structural design actions, Part2: Wind actions, Standard Australia, Standards New Zealand, pp.89.
31. Tamura, Y., Kikuchi, H., and Hibi, K., 2000, “Wind load combinations and extreme pressure distributions on low-rise buildings”, Wind and Structures, An International Journal, 3(4), pp.279-289.
32. Tamura, Y., Kikuchi, H., and Hibi, K., 2002, “Quasi-static wind load combinations for low- and middle-rise buildings AGD2002 Symposium Preprints, Engineering Symposium to Honor Alan G. Davenport for his 40 Years of Contributions”, The University of Western Ontario, Canada, pp.C3-1-C3-12.
33. Kikutchi, H., Tamura, Y., and Hibi, K., 2003, “Quasi-static wind load combinations for low- middle- and high-rise buildings”, Proceedings of the 11th International Conference on Wind Engineering, IAWE, Lubbock, USA,2003.(in press).
34. American Society of Civil Engineers, “Minimum Design Loads for Buildings and Other Structures”, ASCE, Nov, 1990.
35. Durst, C. S., 1960, “Wind Speeds Over Short Periods of Time”, Meteorl. Mag., 89, p181-186.
36. Davenport, A. G., 1956, “The Relationship of Wind Structure to Wind Loading”, Proc. Symp. On Wind Effects on Buildings and Structures, Vol. 1, National Physical Laboratory, Teddington, U.K. Her majesty’s Stationary Office, London, p53-102.
37. Davenport, A. G., 1961, “The Spectrum of Horizontal Gustiness Near the Ground in High Winds”, J. of Royal Meteorol, Soc., 87, p194-211.
38. American Society of Civil Engineers (ASCE) (2000). ASCE 7-98 Minimum Design Loads for Buildings and Other Structures. Reston, VA.
39. Architectural Institute of Japan (AIJ) (1996). Recommendations for Loads on Buildings. Tokyo.
40. National Research Council of Canada (NRCC). (1996). User’s Guide-NBCC1995 Structural Commentaries (Part 4).
41. Australian Standard (AS) (1989). SAA Loading Code, Part 2- Wind Forces, AS1170.2-89. Sydney.
42. 蔡益超、陳瑞華、項維邦,”建築物風力規範條文、解說及示範例之研訂”,內政部建築研究所研究報告,民國85年6月。
43. 陳瑞華、蔡益超、項維邦,”風力規範中標稱風速與載重係數之研究(一)”,國科會專題研究成果報告,民國84年8月。
44. 廖志昌,”風力規範中標稱風速與高樓舒適度條文可靠度之研究”,國立台灣工業技術學院營建工程技術研究所碩士論文,民國84年6月。
45. Marukawa, H., Ohkuma, T. and Momomura, Y., 1992, “Across-wind and torsional acceleration of prismatic high rise buildings,” Journal of Wind Engineering and Industrial Aerodynamics, v 42, n 1-3, p 1139-1150
46. Agemori, Y., Choi, H. and Kanda, J. “Characteristics of fluctuating wind forces on 3D cylinders,” Proceedings of the 11th National Symposium on Wind Engineering, Tokyo, Japan, pp.161-166(in Japanese), 1990.
47. Fujii, K., Hibi, K., Otsuki, T. and Ueda, H., “Measurements of fluctuating pressures on square cross section buildings,” J. of Wind Engineering, JAWE, 31, pp1-11(in Japanese), 1987.
48. Saunders, J. W. and Melbourne, W. H., “Tall Rectangular Building Response to Cross-wind Excitation,” Proc. 4th International Conference on Wind Effects on Buildings and Structures, Cambridge University Press, September 1975, pp. 369-379.
49. Kwok, K. C. S. and Melbourne, W. H., “Wind-induced Lock-in Excitation of Tall Structures”, J. of The Structural Division, ASCE, V 107, No ST1, January, 1981, pp. 57-72.
50. Melbourne, W.H., “Probability Distributions of Response of BHP House to Wind Action and Model Comparisons”, Journal of industrial Aerodynamics, Vol 1, 1975, pp. 167-175.
51. Melbourne, W.H., “Probability Distributions Associated with Wind Loading of Structures”, Inst. Engrs. Australian Civ. Eng. Trans., 1977, CE19(1), pp. 58.
52. Solari, G. and Pagnini, L. C., 1999, “Gust Buffeting and Aeroelastic Behaviour of Poles and Monotubular Towers ”, Journal of Fluids and Structures, v 13, p 877-905.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔