(3.238.174.50) 您好!臺灣時間:2021/04/18 02:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴佑門
研究生(外文):Lai, Yu Men
論文名稱:共沉澱法在鐵酸鋇粉體之製備
論文名稱(外文):Preparation of BaFe12O19 Powder By Coprecipitation
指導教授:余宣賦
指導教授(外文):Yu, Hsuan-Fu
學位類別:碩士
校院名稱:淡江大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:120
中文關鍵詞:共沈澱法粉體製備鐵酸鋇硬磁性
外文關鍵詞:Coprecipitation methodPowder preparationBaFe12O19Hard magnets
相關次數:
  • 被引用被引用:1
  • 點閱點閱:195
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
本研究分別以NH4OH和C2H2O4為沈澱劑之共沉澱法製備鋇鐵氧磁體粉末。硝酸鋇與硝酸鐵依不同比例混合溶解於去離水後,藉由添加氨水來產生先驅物,經過乾燥與熱處理後,分析粉體性質。在另一程序中,藉由添加草酸於起始溶液中,而沈澱出金屬草酸鹽類。在這程序中,藉由添加氨水來預先控制整個系統之pH值於一固定狀態下,所得到之草酸鹽類先驅物經過乾燥與不同溫度熱處理後,藉由XRD、SEM、TEM、TG和DSC分析。探討在這兩種程序中,pH值、鐵離子與鋇離子之莫耳比和熱處理溫度對最終粉體物化性之影響。若忽略沈澱劑的種類,粉體經過1000℃熱處理後,以pH=10,Fe3+/Ba2+=10之莫耳比的狀態下,能得到以BaFe12O19為主要相態。鐵酸鋇的結晶度會隨起始溶液的pH值增加而增加,鐵酸鋇粒子的大小會隨草酸的添加而減小。

BaF12O19 powder was prepared using coprecipitation techniques. NH4OH and C2H2O4 were used as precipitating agents, respectively. Iron(Ⅲ) and barium(Ⅱ) nitrate, in predesigned ratios, were dissolved in deionized water to form the required aqueous solution. By adding NH4OH, the precipitates were formed and collected. After drying and calcination, the obtained solids were analyzed. On the other hand, adding oxalic acid into the solution caused the formation of metallic oxalate and precipitated from the solution. The pH of this process was controlled at presetted value by adding ammonium hydroxide. The obtained oxalate precursors were dried and calcinated at different temperatures. Effects of pH of the solution, molar ratios of ferric ions to barium ions, and temperatures of calcination on characteristics of the resultant particles were studied for these two processes. The physical and chemical characters of resultant particles were measured by XRD, SEM, TEM, TG, and DSC. Regardless of the type of precipitating agent used, after 1000℃ calcination the powder obtained from pH=10 and molar ratio Fe3+/Ba2+=10 had major crystalline phase of BaFe12O19. Raising the pH of solution increased the crystallinity of resultant BaFe12O19 particles. Increasing the amount of oxalic acid added into the solution decreased the size of BaFe12O19 particles.

中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
圖目錄 Ⅵ
表目錄 ⅩⅢ
第一章 緒論 1
1-1 前言 1
1-2 磁體的分類與應用 1
1-3 研究動機與目的 3
第二章 文獻回顧與理論基礎 6
2-1 鋇鐵氧粉體製程之文獻回顧 6
2-1-1 傳統固態製程法 6
2-1-2 玻璃結晶化法 7
2-1-3 水熱合成法 7
2-1-4 微波電漿燒結法 8
2-1-5 檸檬酸鹽先驅物法 8
2-1-6 噴霧熱解法 11
2-1-7 溶膠-凝膠法 12
2-1-8 化學共沈澱法 13
2-2 鐵氧磁體晶體結構 16
2-3 磁性質 18
2-3-1 飽和磁化強度 19
2-3-2 矯頑磁力 20
2-4 理論密度 21
第三章 實驗步驟與儀器分析 22
3-1 實驗步驟 22
3-2 儀器分析 26
3-2-1 XRD繞射析儀 27
3-2-2 熱重分析 28
3-2-3 高溫示差掃描量熱計 28
3-2-4 掃描式電子顯微鏡 29
3-2-5 能量散佈光譜儀 30
3-2-6 傅氏轉換紅外線光譜儀(Fourier transform IR spectrum, FT-IR) 31
第四章 結果與討論 33
4-1 粉體熱行為表現與粒子形態 33
4-1-1 氨水製程 33
4-1-1-1 硝酸鋇之熱行為表現 33
4-1-1-2 硝酸鐵之熱行為表現 34
4-1-1-3 雙成份系統之熱行為表現 36
4-1-1-4 雙成份系統之粒子形態 40
4-1-2 草酸製程 41
4-1-2-1 單成份系統鋇之熱行為表現 41
4-1-2-2 單成份系統鐵之熱行為表現 46
4-1-2-3 雙成份系統之熱行為表現 47
4-1-2-4 雙成份系統之粒子形態 49
4-1-2-5 改變鐵鋇比的影響 52
第五章 結論 86
參考文獻 87
附錄 93
圖目錄
圖2-1 magnetoplumbite型構造與磁性構造 17
圖2-2 BaFe12O19值的飽和磁化強度與溫度的變化關係 19
圖3-1 以氨水為沈澱劑之共沉澱法的實驗流程圖 24
圖3-2 以草酸為沈澱劑之共沉澱法的實驗流程圖 25
圖3-3 由一晶格所生之繞射 27
圖3-4 DSC的原理 29
圖3-5 掃描式電子顯微鏡剖面機構示意圖 30
圖4-1 硝酸鋇Ba(NO3)2在空氣流率60 mL/min和加熱速率10 K/min下所得之TG/DSC圖 55
圖4-2 起始原料硝酸鋇,熱處理溫度分別在450℃、800℃和1000℃下1小時之XRD圖 56
圖4-3 硝酸鐵Fe(NO3)3‧9H2O在空氣流率60 mL/min和加熱速率10 K/min下所得之TG/DSC圖 57
圖4-4 起始原料硝酸鐵Fe(NO3)3‧9H2O,熱處理溫度在500℃下1小時之XRD圖 57
圖4-5 氨水製程0.2M,pH(Fe/Ba)=10(12),在空氣流率60 mL/min和加熱速率10 K/min下所得之TG/DSC圖 58
圖4-6 氨水製程0.2M,pH(Fe/Ba)=10(12),熱處理溫度在(a) 200℃、(b)400℃、(c)700℃、(d)800℃、(e)900℃和(f) 1000℃下之XRD圖 59
圖4-7 氨水製程0.2M,pH(Fe/Ba)=10(4),在空氣流率60 mL/min和加熱速率10 K/min下所得之TG/DSC圖 60
圖4-8 氨水製程0.2M,pH(Fe/Ba)=10(8),在空氣流率60 mL/min和加熱速率10 K/min下所得之之TG/DSC圖 61
圖4-9 氨水製程0.2M,pH(Fe/Ba)=10(10),在空氣流率60 mL/min和加熱速率10 K/min下所得之之TG/DSC圖 62
圖4-10 氨水製程0.2M,pH(Fe/Ba)=10(4),熱處理溫度在(a) 200℃、(b)400℃、(c)700℃、(d)800℃、(e)900℃和(f) 1000℃下之XRD圖 63
圖4-11 氨水製程0.2M,pH(Fe/Ba)=10(8),熱處理溫度在(a) 200℃、(b)400℃、(c)700℃、(d)800℃、(e)900℃和(f)1000℃下之XRD圖 64
圖4-12 氨水製程0.2M,pH(Fe/Ba)=10(10),熱處理溫度在(a) 200℃、(b)400℃、(c)700℃、(d)800℃、(e)900℃和(f)1000℃下之XRD圖 65
圖4-13 氨水製程0.2M,pH(Fe/Ba)=10(10),熱處理溫度在(a) 700℃、(b)800℃、(c)900℃和(d)1000℃之SEM(×20K)圖 66
圖4-14 氨水製程0.2M,pH(Fe/Ba)=10(10),熱處理溫度在(a) 700℃、(b)800℃、(c)900℃和(d)1000℃之SEM(×50K)圖 67
圖4-15 草酸製程,單成份鋇0.08M,草酸過量150%,pH=9,在空氣流率60 mL/min和加熱速率10 K/min下所得之TG/DSC圖 68
圖4-16 草酸製程,單成份鋇0.08M,草酸過量150%,pH=9,熱處理溫度在(a)80℃、(b)300℃、(c)500℃和(d)700℃下之XRD圖 69
圖4-17 碳酸鋇BaCO3之TG/DSC圖 70
圖4-18 草酸製程,單成份鐵0.08M,草酸過量150%,pH=9,在空氣流率60 mL/min和加熱速率10 K/min下所得之TG/DSC圖 71
圖4-19 草酸製程,單成份鐵0.08M,草酸過量150%,pH=9,熱處理溫度在(a)80℃和(b)700℃之XRD圖 71
圖4-20 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=10(12),在空氣流率60 mL/min和加熱速率10 K/min下所得之TG/DSC圖 72
圖4-21 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=10(12),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃下之XRD圖 73
圖4-22 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=7(12),在空氣流率60 mL/min和加熱速率10 K/min下所得之TG/DSC圖 74
圖4-23 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=7(12),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃下之XRD圖 75
圖4-24 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=8(12),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃下之XRD圖 76
圖4-25 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=9(12),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃下之XRD圖 77
圖4-26 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=11(12),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃下之XRD圖 78
圖4-27 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=10(12),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃之SEM(×20K)圖 79
圖4-28 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=10(12),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃之SEM(×50K)圖 80
圖4-29 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=10(12),熱處理溫度分別在(a)800℃和(b)1000℃之TEM(×100K)圖 81
圖4-30 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=10(10),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃下之XRD圖 82
圖4-31 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=10(10),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃之SEM(×20K)圖 83
圖4-32 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=10(10),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃之SEM(×50K)圖 84
圖4-33 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=10(10),熱處理溫度分別在(a)800℃和(b)1000℃之TEM(×100K)圖 85
圖A-1 硝酸鋇Ba(NO3)2在空氣流率40 mL/min和加熱速率10 K/min下所得TG/DSC圖 95
圖A-2 氨水製程0.2M,pH(Fe/Ba)=10(4),熱處理溫度在(a) 700℃、(b)800℃、(c) 900℃和(d)1000℃之SEM(×20K)圖 96
圖A-3 氨水製程0.2M,pH(Fe/Ba)=10(4),熱處理溫度在(a) 700℃、(b)800℃、(c) 900℃和(d)1000℃之SEM(×50K)圖 97
圖A-4 氨水製程0.2M,pH(Fe/Ba)=10(8),熱處理溫度在(a) 700℃、(b)800℃、(c) 900℃和(d)1000℃之SEM(×20K)圖 98
圖A-5 氨水製程0.2M,pH(Fe/Ba)=10(8),熱處理溫度在(a) 700℃、(b)800℃、(c) 900℃和(d)1000℃之SEM(×50K)圖 99
圖A-6 氨水製程0.2M,pH(Fe/Ba)=10(12),熱處理溫度在(a) 700℃、(b)800℃、(c) 900℃和(d)1000℃之SEM(×20K)圖 100
圖A-7 氨水製程0.2M,pH(Fe/Ba)=10(12),熱處理溫度在(a) 700℃、(b)800℃、(c) 900℃和(d)1000℃之SEM(×50K)圖 101
圖B-1 草酸製程,單成份鋇0.08M,草酸過量150%,pH=9,在氮氣流率60 mL/min和加熱速率10 K/min下所得之TG/DSC圖 102
圖B-2 草酸鋇BaC2O4之FTIR圖 103
圖B-3 碳酸鋇BaCO3之FTIR圖 103
圖B-4 草酸製程,單成份鋇0.08M,草酸過量150%,熱處理溫度在(a)300℃、(b)500℃和(c)700℃下之FTIR圖 104
圖B-5 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=7(12),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃之SEM(×20K)圖 105
圖B-6 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=7(12),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃之SEM(×50K)圖 106
圖B-7 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=8(12),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃之SEM(×20K)圖 107
圖B-8 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=8(12),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃之SEM(×50K)圖 108
圖B-9 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=9(12),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃之SEM(×20K)圖 109
圖B-10 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=9(12),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃之SEM(×50K)圖 110
圖B-11 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=11(12),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃之SEM(×20K)圖 111
圖B-12 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=11(12),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃之SEM(×50K)圖 112
圖B-13 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=10(8),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d)900℃和(e)1000℃下之XRD圖 113
圖B-14 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=10(8),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃之SEM(×20K)圖 114
圖B-15 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=10(8),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃之SEM(×50K)圖 115
圖B-16 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=10(8),熱處理溫度分別在(a)800℃和(b)1000℃之TEM(×100K)圖 116
圖B-17 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=10(4),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃下之XRD圖 117
圖B-18 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=10(4),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃之SEM(×20K)圖 118
圖B-19 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=10(4),熱處理溫度分別在(a)450℃、(b)700℃、(c)800℃、(d) 900℃和(e)1000℃之SEM(×50K)圖 119
圖B-20 草酸製程0.08M,草酸過量150%,pH(Fe/Ba)=10(4),熱處理溫度分別在(a)800℃和(b)1000℃之TEM(×100K)圖 120
表目錄
表3-1 所實驗所需試藥 22
表3-2 儀器分析 26
表4-1 硝酸鐵之熱分析結果 36
表4-2 氨水製程,pH(Fe/Ba)=10(10)之熱分析結果 38
表4-3 氨水製程,固定整個系統pH=10,熱行為表現與推算之結果 39
表4-4 單成份系統鋇之熱分析結果 45
表4-5單成份系統鐵之熱分析結果 47

1.M. P. Sharrock, “Particulate magnetic recording media: a review,” IEEE Trans. on Magn., 25, 4374-89 (1989).
2.M. P. Sharrock and L. W. Carlson, “The application of barium ferrite particles in advanced recording media,” IEEE Trans. on Magn., 31, 2871-76 (1995).
3.黃忠良譯著,磁性陶瓷,復漢出版社,1998.
4.蘇品書編撰,超微粒子材料技術,復漢出版社,1989.
5.莊萬發編撰,超微粒子理論應用,復漢出版社,1995.
6.H. P. Steier, J. Requena, J. S. Moya, Cabanas, J. M. Gonzalez-Calbet and M. Vallet-Regi, “Transmission electron microscopy study of barium hexaferrite formation from barium carbonate and hematite,” J. Mater. Res., 14, 3647-52 (1999).
7.B. T. Shirk and W. R. Buessem, “Magnetic properties of barium ferrite formed by crystallization of a glass,” J. Am. Ceram. Soc., 53, 192-196 (1970).
8.O. Kubo, T. Ido and H. Yokoyama, “Properties of Ba ferrite particles for perpendicular magnetic recording media,” IEEE Trans. on Magn., 18, 1122-24 (1982).
9.W. J. Dawson, “Hydrothermal synthesis of advanced ceramic powders,” Ceram. Bull., 67[10], 1673-78 (1988).
10.S. I. Hirano, “Hydrothermal processing of ceramics,” Ceram. Bull., 66[9], 1342-44 (1987).
11.X. Liu, J. Wang, L. M. Gan and S. C. Ng, “Improving the magnetic properties of hydrothermally synthesized barium ferrite,” J. Magn. Magn. Mater., 195, 452-459 (1999).
12.C. H. Lin, Z. W. Shih, T. S. Chin, M. L. Wang and Y. C. Yu, “Hydrothermal processings to produce magnetic particulates,” IEEE Trans. on Magn., 26, 15-17 (1990).
13.D. Barb, L. Diamandescu, A. Rusi, M. Morariu and V. Teodorescu, “Preparation of barium hexaferrite by a hydrothermal method: structure and magnetic properties,” J. Mater. Sci., 21, 1118-22 (1986).
14.M. Fujita, N. BaFe12O19 particles prepared by microwave plasma sintering,” IEEE. Trans. Magn. 29, 2129-33 (1993).
15.M. Pechini, ”U.S. Pat.” No. 3 330 697 (July 11,1967).
16.W. Zhong, W. Ding, Y. Jiang, N. Zhang, J. Zhang, Y. Du and Q. Yan, “Preparation and magnetic properties of barium hexaferrite nanoparticles produced by the citrate process,” J. Am. Ceram. Soc., 680(12), 3258-62 (1997).
17.W. J. Lee and T. T. Fang, “The effect of the molar ratio of cations and citric acid on the synthesis of barium ferrite using a citrate process,” J. Mater. Sci., 30, 4349-54 (1995).
18.V. K. Sankaranarayanan and D. C. Khan, “Mechanism of the formation of nanoscale M-type barium hexaferrite in the citrate precursor method,” J. Magn. Magn. Mater., 153, 337-46 (1996).
19.V. K. Sankaranarayanan,Q. A. Pankhurst, D. P. E. Dickson and C. E. Johnson, ”Ultrafine particle of barium ferrite from a citrate precursor,” J. Magn. Magn. Mater., 120, 73-75 (1993).
20.M. V. Rane, D. Bahadur, S. K. Mandal and M. J. Patni, “Characterization of BaFe12-2xCoxZrxO19 (0≦x≦0.5) synthesized by citrate gel precursor route,” J. Magn. Magn. Mater., 153, L1-L4 (1996).
21.T. Ogasawara and M.A.S. Oliverira, “Microstructure and hysteresis curves of the barium hexaferrite from co-precipitation by organic agent,” J. Magn. Magn. Mater., 217, 147-154 (2000).
22.C. Marcilly, P. Courty and B. Delmon, “Preparation of highly dispersed mixed oxides and oxide solid solutions by pyrolysis of amorphous organic precursors,” J. Am. Ceram. Soc., 53(1), 56-57 (1970).
23.P. Courty, H. Ajot, C. Marcilly and B. Delmon, “Oxydes mixtes ou en solution solide sous forme tres divisee obtenus par decomposition thermique de precurseurs amorphes,” Powder Technol. 7, 21-38 (1973).
24.L. W. Tai and P. A. Lessing, ”Modified resin-intermediate processing of perovskite powders: Part I. Optimization of polymeric precursors,” J. Mater. Res., 7, 502-10 (1992).
25.H. F. Yu and K.C. Huang, “Preparation and characterization of ester-derived BaFe12O19 powder,” J. Mater. Res., 17, 199-203 (2002).
26.M. V. Cabanas, J. M. Gonzalez-Calbet, M. Labeau, P.Mollard, M. Pernet and M. Vallet-Regi, “Evolution of the microstructure and its influence on the magnetic properties of aerosol synthesized BaFe12O19 particles” J. Solid State Chem., 101, 265-274 (1992).
27.V. K. Sankaranarayanan, R. P. Pant and A. C. Rastogi, “Spray pyrolytic deposition of barium hexaferrite thin films for magnetic recording applications,” J. Magn. Magn. Mater., 220, 72-78 (2000).
28.M. V. Cabanas, J. M. Gonzalez-Calbet and M. Vallet-Regi, “Synthesis of barium hexaferrite by pyrolysis of an aerosol,” J. Mater. Res., 9, 712-16 (1994).
29.T. Gonzalez-Carreno, M. P. Morales and C. J. Serna, “Barium ferrite nanoparticles prepared directly by aerosol pyrolysis,” Mater. Latt., 43, 97-101 (2000).
30.W. Zhong, W. Ding, N. Zhang, J. Hong, Q. Yan and Y. Du, “Key step in synthesis of ultrafine BaFe12O19 by sol-gel technique,” J. Magn. Magn. Mater., 168, 196-202 (1997).
31.S. Díaz, J. L. Sánchez, B. E. Watts, F. Leccabue and R. Panizzieri, “Magnetic properties of polycrystalline BaFe12O19 thin films prepared from metallorganic decomposition on ZrO2-coated Si substrates,” J. Magn. Magn. Mater., 151, 173-177 (1995).
32.R. C. Pullar and A. K. Bhattacharya, “Crystallisation of hexagonal M ferrites from a stoichiometric sol-gel precursor, without formation of the α-BaFe2O4 intermediate phase,” Mater. Lett., 57, 537-542 (2002).
33.S. R. Janasi, M. Emura, F. J. G. Landgraf and D. Rodrigues, “The effects of synthesis variables on the magnetic properties of coprecipitated barium ferrite powders,” J. Magn. Magn. Mater., 238, 168-172 (2002).
34.S. R. Janasi, D. Rodrigues, M. Emura and F.J.G. Landgraf, “Barium ferrite powders obtained by co-precipitation,” Phys. Stat. Sol. (a), 185, 479-485 (2001).
35.S. E. Jacobo, M. A. Blesa, C. Domingo-Pascual and R. Rodpiguez-Clemente, “Synthesis of ultrafine particles of barium ferrite by chemical coprecipitation,” J. Mater. Sci., 32, 1025-28 (1997).
36.Z. Y. Zheng, B. J. Guo and X. M. Mei, “A new technology of coprecipitation combined with high temperature-melting for preparing single crystal ferrite powder,” J. Magn. Magn. Mater., 78, 73-76 (1989).
37.P. C. Kuo, Y. D. Yao and W. I. Tzang, “Magnetic properties of BaFe12-2xCoxSnxO19 prepared by coprecipitation annealing,” J. Appl. Physi., 73, 6292-94 (1993).
38.J. Ding, X. Y. Liu , J. Wang and Y. Shi, “Ultrafine ferrite paritles prepared by coprecipitation/mechanical milling,” Mater. Latt, 44, 19-22 (2000).
39.J. Matutes-Aquino, S. Diaz-Castanon, M. Mirabal-Garcia and S.A. Palomares-Sanchez, “Synthesis by coprecipitation and dtudy of barium hexaferrite powders,” Scipta matter., 42, 295-299 (2000).
40.S. R. Janasi, D. Rodrigues, F. J. G. Landgraf and M. Emura, “Magnetic properties of coprecipitated barium ferrite powders as a function of synthesis Conditions,” IEEE Trans. on Magn., 36, 3327-3329 (2000).
41.D. H. Chen and Y. Y. Chen, “Synthesis of barium ferrite ultrafine particles by coprecipitation in the presence of polyacrylic Acid,” J. Colloid Interf. Sci., 235, 9-14 (2001).
42.File No. 39-1433, Powder Diffraction File, compiled by the JCPDS-International Centre for Diffraction Data in cooperation with the American Society for Testing and Materials.
43.L. Néel, “Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism,” Ann. Phys. [Paris], 3, 137-65 (1948).
44.汪建民主編,陶瓷技術手冊(上),中華民國產業科技發展協進會,(1994).
45.張煦,李學養譯,磁性物理學,聯經出版社,(1981).
46.J. Smit and H. P. Wijn, J. Ferrites. pp. 369 (New York: Wily, 1959. This book is published in the Philips Technical Library series).
47.E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” Phil. Trans. Roy. Soc., A-240, 599-642 (1948).
48.汪建民主編,材料分析,中國材料科學學會,(1998).
49.L. Marta, M. Zaharescu, Iov. Haiduc and C. Gh. Macarovici, “Thermal synthesis of barium and barium-strontium metaniobates by using a coprecipitation method,” J. Thermal. Anal., 28, 175-188(1983).
50.File No. 18-0203, Powder Diffraction File, compiled by the JCPDS-International Centre for Diffraction Data in cooperation with the American Society for Testing and Materials.
51.File No. 46-0611, Powder Diffraction File, compiled by the JCPDS-International Centre for Diffraction Data in cooperation with the American Society for Testing and Materials.
52.B. V. L’vov, “Mechanism and kinetics of thermal decomposition of carbonates,” Thermochim. Acta, 386, 1-16 (2002).
53.G. Benito, M. P. Morales, J. Requena, V. Raposo, M. Vázquez and J. S. Moya, “Barium hexaferrite monodispersed nanoparticles prepared by the ceramic method,” J. Magn. Magn. Mater., 234, 65-72 (2001).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔