(3.234.221.67) 您好!臺灣時間:2021/04/11 16:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳淑英
研究生(外文):Chen, Sour-Ying
論文名稱:利率期限結構模型於保險商品定價之應用
論文名稱(外文):The Application of Term-Structure Interest Rate Model in Insurance Rate Making
指導教授:楊曉文楊曉文引用關係
指導教授(外文):Yang, Shau-Wen
學位類別:碩士
校院名稱:淡江大學
系所名稱:保險學系保險經營碩士班
學門:商業及管理學門
學類:風險管理學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:120
中文關鍵詞:利率期限結構保險費利率風險
外文關鍵詞:Term Structure of Interest RatesInsurance PremiumInterest Rate Risk
相關次數:
  • 被引用被引用:12
  • 點閱點閱:177
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
本文主要是探討利率期限結構模型於保險商品定價之應用,乃是將
利率期限結構模型引用到保險費之計算。本文以Vasicek(1977)與CIR(1985a)所發表之利率模型為研究模型基礎,以定期壽險、生死合險、終身壽險以及終身年金等商品為研究標的。研究重點包含:使用Vasicek與CIR模型對保險商品定價,並與固定預定利率方式計算之保險費加以比較分析。進一步,探討利率期限結構模型參數變化對保險費率影響之敏
感度分析。最後,以台灣市場資料為例對保險商品定價作模擬分析。
綜合本文研究結果發現:以往使用單一預定利率方式來定價保險商品,隱含忽略實際市場的利率期限結構,當市場利率較高,保險公司會
提供較高的預定利率,保費較低廉;然而當市場利率一旦走低,在壽險
契約具長期性的特質下,定價過低的問題自然顯現,使保險公司必須承
擔利率變動之風險。採用利率期限結構模型所模擬之純保費,不論考慮
不同時點之保險契約或是考慮利率之隨機性,皆是以長期平均利率水準
為基礎,並將未來利率之變動納入保費計算之因子,隨市場利率之變動
,利率期限結構模型能將之反應在保費之計算上,進而降低利率變動對
保險公司所帶來之風險。因此,建構符合市場趨勢的利率期限結構,並
作合理的保險定價顯得迫切與重要。
Abstract:
The article principally discusses the application of
term-structure interest rate model in pricing life insurance.
We attempt to calculate the net premium using term structure interest rates instead of fixed discount rates. We adopt two well-known term-structure interest rate models-Vasicek(1977) and Cox, Ingersoll, and Ross (1985a). The pricing method that incorporate term-structure interest rate for four different types of life insurance contracts such as endowment insurance, term life insurance,whole life insurance and annuity is presented.
In attempt to calculate the net premium that reflects the
trend of future interest rate for Taiwan financial market,
we consider three different interest rate data to calibrate
the Vasicek and Cox, Ingersoll, and Ross model separately.
We then use the parameters for the term structure to calculate the net premium. The comparison of the net premium using term-structure interest rates with those using fixed discount rates is analyzed. The sensitivity analysis is also carried out to exam the effect of changing the parameters used in the term-structure interest rate model.
The results of the study show that using fixed discount rate method to calculate the net premium at makes an insurer more risky. If the future market interest rate becomes lower than what the company estimates, using fixed discount rate method may cause the net premium substantially under-priced. Thus,the insurer may have to consider the variation of future interest rate in pricing life insurance.
Adopting term-structure interest rate model can reflect
the stochastic interest rate and reduce the interest rate risk
to the insurer in pricing life insurance. Therefore, it is
very important and imperative to establish term structure of interest rate that tally with market tendency and to price insurance products reasonably.
第一章 緒論 .............................................1
第一節 研究動機 .........................................1
第二節 研究目的 .........................................2
第三節 研究範圍 .........................................3
第四節 研究架構 .........................................3
第二章 相關文獻探討 .....................................5
第一節 利率期限結構理論 .................................5
第二節 單因子利率模型 ..................................11
第三節 文獻回顧 ........................................22
第三章 理論基礎與研究模型 ..............................27
第一節 純保險費之計算基礎與方式 .........................27
第二節 利率期限結構下純保險費之計算方式 .................34
第三節 研究模型 ........................................39
第四章 考慮利率期限結構下之保險商品定價..................49
第一節 研究假設 .......................................49
第二節 數值結果:情況一 ...............................51
第三節 模擬結果:情況二 ...............................60
第四節 保險期間變化對保險商品費率之影響 ................66
第五節 參數變化對保險商品費率之影響 ...................68
第五章 保險商品考慮利率期限結構之研究
─以台灣市場資料為例.............................75
第一節 參數估計方法介紹 ...............................75
第二節 參數估計 ........................................78
第三節 模擬結果 .......................................84
第六章 結論與建議 .......................................99
第一節 結論 ...........................................99
第二節 後續研究建議 ..................................103
參考文獻 ...............................................105
附 錄 ...............................................109
中文部分
伏和靖,「台灣地區貨幣市場利率期限結構之實證研究」,淡江大學
金融研究所碩士論文,民國七十八年六月。
李家泉,實用壽險數理,第11版,華泰文化出版,民國九十年,p75-144。
李清賢,「臺灣貨幣市場短期利率模型適用性之比較分析」,淡江大
學金融研究所碩士論文,民國八十四年六月。
林逸雯,「死亡率與利率隨機下在準備金涉險值之模擬研究」,逢甲
大學統計與精算研究所碩士論文,民國九十年六月。
柯雅玲,「台灣貨幣市場利率隨機動態轉移特性之研究」,國立政治
大學企業管理學系碩士論文,民國八十六年六月。
莊武仁,黃尹亭,「臺灣貨幣市場利率期限結構模型之實證研究─SR
和DSR模型適用性之比較分析」,台灣銀行季刊第四十四卷第四期,
民國八十二年十二月,p55-85。
高孟君,「隨機利率下年金保險評價之研究」,元智大學管理研究所
碩士論文,民國八十八年六月。
陳一正,「一般均衡之利率期限結構-Vasicek一因子與二因子模型實證」,國立台灣大學財務金融學系碩士論文,民國八十五年六月。
陳勇志,「利率隨機性理論在年金保險上的應用」,私立逢甲大學統計
與精算研究所碩士論文,民國八十五年六月。
陳雲中,保險學要義-理論與實際,修訂新版,民國九十年,p203-
214。
翁建勳,「變額保險之模擬研究」,逢甲大學統計與精算研究所碩士
論文,民國九十一年六月。
張士傑,陳威光,「不同利率模型下之債券評價分析」,保險專刊第
四十六輯,民國八十五年十二月,p139-150。
謝冠生,「一般帳戶投資型年金之資產負債管理:免疫理論與最適資
產配置之應用」,國立政治大學風險管理與保險學系碩士論文,民國
九十年六月。
英文部分
Black, Fisher, Karasinski and Scholes (1973) ,“The Pricing of Options and Corporate Liabilities”, Journal of Political Economy 81:637-654.
Brennan M. J. and. Schwartz E. S. (1977) ,“Savings Bonds,and Callable Bonds”, Journal of Financial Economics 3:133-155.
Brennan M. J. and Schwartz E. S. (1980) , “Analyzing Convertible Bonds”, Journal of Financial and Quantitative Analysis 15:907-927.
Chan K.C., Karolyi G.A., Longstaff F. A. and Sanders A. B. (1992) ,“An Empirical Comparison of Alternative Models of The Short-Term Interest Rate”, The Journal of Finance47:1209-1227.
Cox J. C. and Ross S.A. (1976) ,“The Valuation of Options for Alternative Stochastic Process”, Journal of Financial Economics 3:145-166.
Cox J. C. and Ross S.A. (1979) ,“Duration and The Measurement of Basis Risk”,The Journal of Business 52:51-61.
Cox J. C., Ingersoll J.E.and. Ross S.A (1980) ,“An Analysis of Variable Rate Loan Contracts”,The Journal of Finance 35:389-403.
Cox J. C. and Ross S.A. (1981) ,“ A Re-Examination of Traditional Hypotheses about The Term Structure of Interest Rates”,The Journal of Finance36: 769-799.
Cox J. C., Ingersoll J.E. and Ross S.A (1985a) ,“An Intertemporal General Equilibrium Model of Asset Prices”,Econometrica 53:363-384.
Cox J. C., Ingersoll J.E. and. Ross S.A (1985b) ,“A Theory of The Term Structure of Interest Rates”,Econometrica 53:385-407.
Culbertson J.M. (1957) ,“The Term Structure of Interest Rates”,Quarterly Journal of Economics 71:489-504.
Dothan L. U.(1978) , “On the Term Structure of Interest Rates.” Journal of Financial Economics 6:59-69.
Fama E.F. (1984) , “Term Premiums in Bond Returns” ,Journal of Financial Economics 13:529-546.
Froot K. (1989) ,“Now Hope for The Expectations Hypothesis of The Term Structure of Interest Rates”,Journal of Finance 44:283-305.
Hansen L.P. (1982) ,“Large Sample Properties of Generalized Mothod of Moments Estimators”,Econometrica 50:1029-1054.
Ho Thomas. S. and Sang Bin. Lee. (1986) ,“Term Structure Movements and Pricing Interest Rate Contingent Claims ”,The Journal of Finance:1011-1029.
Lai, Siu-Wai, Frees and Edward W.(1995) , "Examining Changes in Reserves Using Stochastic Interest Models" The Journal of Risk and Insurance 62:535-574.
Lee J. P. and Yu M.T. (2002) ,“Pricing Default-risky CAT Bonds with Moral Hazard and Basis Risk”,Journal of Risk and Insurance 69:25-44.
Longstaff F. A. (1989) ,“A Nonlinear General Equilibrium Model of The Term Structure of Interest Rates”, Journal of Financial Economics23:195-224.
Marsh, T.A. and Rosenfeld E.R. (1983) ,“Stochastic Processes for Interest Rates and Equuilibrium Bond Prices”,The Journal of Finance38:635-646.
McFadyen , Pickerill J. K. and Devancy M. (1991) ,“The Expectations Hypothesis of The Term Structure :More Evidence”, Journal of Economics and Business 43:79-85.
Meiselman D. (1962) ,“The Term Structure of Interest Rates ”, Englewood Cliffs,N.J.:Prentice-Hall.
Merton R.C. (1973) ,“Theory of Rational Option Pricing”,Bell Journal of Economics and Management Science 4:141-183.
Merton R. C. (1973) ,“An Intertemporal Capital Asset Pricing Model”, Econometrica 41:385-407.
Modigliani F. and Sutch R. (1966) ,“Innovations in Interest Rate Policy”,American Economic Review 56:178-197.
Park S.Y. and Reinganum M. R. (1986) ,“The Puzzling Price Behavior of Treasury Bills That Mature at The Turn of Calendar Months”, Journal of Financial Economics 16:267-283.
Roll R. (1971) ,“Investment Diversifications and Bond Maturity”, Journal of Finance 26:51-66.
Sanders A. B. and Haluk U. (1988) ,“On The Intertemporal Behavior of The Short-Term Rate of Interest”, Journal of Financial and Quantitative Analysis 23:417-423.
Shiller R. J. (1979) ,“ The Volatility of Long-Term Interest Rates and Expectations Models of The Term Structure”, The Journal of Political Economy 87:1190-1219.
Simon D.P. (1991) ,“ Segmentation in The Treasury Bill Market: Evidence from Cash Management Bills”, Journal of Financial and Quantitative Analysis 26:97-108.
Tzeng , Wang and Soo (2000) ,“Surplus Management under A Stochastic Process”, Journal of Risk and Insurance 67:451-462.
Vasicek O. A. (1977) ,“A Equilibrium Characterization of The Term Structure”, The Journal of Financial Economics 5:177-188.
Wang J. H. and Wang J. L. (2002), “Net Present Value under Stochastic Interest Rates-An Application in Pricing Life Insurance”,Working Paper.
Wang Jennifer L. (2001) , “Model Risks for Surplus Management Under A Stochastic Process”, Working Paper.
X ueping Wu (2000) ,“A New Stochastic Duration Based on The Vasicek and CIR Term Structure Theories”,Journal of Business & Accounting 27:911-932.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔