跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/21 15:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾煥生
研究生(外文):HUAN-SHENG CHUNG
論文名稱:異向性多層介質受反平面動力載荷之暫態與穩態解析
論文名稱(外文):Transient and Steady-state Responses of Anisotropic Multilayered Media Subjected to Dynamic Anti-plane Loading
指導教授:應宜雄應宜雄引用關係
指導教授(外文):YI-SHYONG ING
學位類別:碩士
校院名稱:淡江大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:120
中文關鍵詞:多層介質異向性波傳暫態穩態反平面
外文關鍵詞:multilayered mediumanisotropicwave propagationtransientsteady-stateanti-plane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本文探討了由異向性材料所構成的複合層域承受反平面動力簡諧載荷時由暫態變化至穩態過程之研究。為了進一步探究影響介質材料之暫態解趨近於穩態解的原因,本文同時解析異向性層域材料受反平面動力簡諧載荷時的暫態與穩態響應,詳細討論了暫態趨近穩態的變化過程。對此複雜之異向性問題,本文利用線性座標轉換之關係,將異向性層域問題轉換至相對應之等向性問題上。其中受反平面動力簡諧載荷之暫態解析是利用Ing and Chen(2003)中所獲得的單位步階函數解析解與時域簡諧波負載作摺積得到;而此異向性層域受時域簡諧負載的穩態解則運用傳統波數積分表示法來解析。最後為了能詳細研究由暫態變化至穩態的過程,將以一異向性薄層材料為例做數值計算,且數值計算部份將探討在不同觀察點、剪力模數比、波速比或頻率之下,近場、中場與遠場的應力如何由暫態趨近至穩態的所有變化過程。
In this paper, the transition from transient response to steady state for anisotropic multilayered media subjected to harmonic anti-plane loading is investigated in detail. In order to solve the complicated anisotropic problem, a linear coordinate transformation is introduced and used to transform the anisotropic layered medium problem to the isotropic case. The geometric configuration in the isotropic case is similar to that in an anisotropic material. The relationship between field quantities of the anisotropic problem and the corresponding isotropic problem is established for Cartesian coordinate system. The corresponding transient responses would be obtained by the convolution of harmonic loading function with transient solutions derived analytically by Ing and Chen (2003). Finally, the steady-state problem is solved by the wave number integral representation. In order to study the transition phenomena in detail, the numerical examples of a layered half-space are considered and evaluated.
目錄
第一章、緒論…………………………………………………………1
1.1 研究動機與文獻回顧……………………………………………1
1.2 內容簡介…………………………………………………………5
第二章、基本理論……………………………………………………6
2.1利用線彈性理論推導反平面問題之控制方程式…………………6
2.2 拉普拉斯轉換與Cagniard-de Hoop method …………………11
2.3 等向性半無窮域表面受動力載荷之暫態解……………………12
2.4 異向性半無窮域表面受動力載荷之暫態解……………………17
2.5 廣義射線理論……………………………………………………21
2.6 討論入射、反射及折射波之關係………………………………23
第三章、承受簡諧負載之暫態解與穩態解之解析…………………27
3.1 薄層受波源 載荷之暫態解……………………………………27
3.2 等向性薄層之穩態響應…………………………………………34
3.3 異向性薄層之穩態響應…………………………………………40
3.4 數值計算方法……………………………………………………46
3.5 結果討論…………………………………………………………50
3.5.1 等向性慢速下層材料問題……………………………………51
3.5.2 異向性慢速下層材料問題……………………………………52
3.5.3 等向性快速下層材料問題……………………………………54
3.5.4 異向性快速下層材料問題……………………………………56
第四章、結論與展望…………………………………………………58
4.1 本文結論…………………………………………………………58
4.2 本文成果…………………………………………………………58
4.3 尚待研究的方向…………………………………………………60
參考文獻………………………………………………………………62
圖目錄
圖1-1 異向性多層介質結構座標系統示意圖………………………66
圖2-1 等向性半無窮域表面受點載荷示意圖………………………67
圖2-2 Cagniard逆轉換法路徑變換圖………………………………68
圖2-3 異向性半無窮域表面受點載荷示意圖………………………69
圖2-4 等向性問題之入射、反射及折射關係圖……………………70
圖3-1 異向性薄層之幾何座標示意圖………………………………71
圖3-2 層等向性複合層域受動力簡諧載荷之結構示意…………72
圖 3-3 等向性薄層受動力簡諧載荷之幾何座標示意圖…………73
圖 3-4 異向性薄層受動力簡諧載荷之幾何座標示意圖…………74
圖 3-5 等向性慢速下層材料之穩態解在不同觀察點下頻率與振幅之關係圖………………………………………………………………………75
圖3-6 等向性慢速下層材料近場之暫態與穩態解…………………76
圖3-7 等向性慢速下層材料中場之暫態與穩態解…………………77
圖3-8 等向性慢速下層材料遠場之暫態與穩態解…………………78
圖3-9 等向性慢速下層材料在 之中場暫態與穩態解……………79
圖3-10 等向性慢速下層材料在 之中場暫態與穩態解……………80
圖3-11 異向性慢速下層材料之穩態解在不同觀察點下頻率與振幅之關係圖………………………………………………………………………81
圖3-12 異向性慢速下層材料在不同觀察點下近場之暫態與穩態解
…………………………………………………………………………82
圖3-13 異向性慢速下層材料在不同觀察點下近場之暫態與穩態解
…………………………………………………………………………83
圖3-14 異向性慢速下層材料在不同觀察點下近場之暫態與穩態解
…………………………………………………………………………84
圖3-15 異向性慢速下層材料在不同觀察點下近場之暫態與穩態解
…………………………………………………………………………85
圖3-16 異向性慢速下層材料在不同觀察點下近場之暫態與穩態解
…………………………………………………………………………86
圖3-17 異向性慢速下層材料在不同慢度 之近場暫態與穩態解…87
圖3-18 異向性慢速下層材料在不同慢度 之近場暫態與穩態解…88
圖3-19 異向性慢速下層材料在不同 之近場暫態與穩態解………89
圖3-20 異向性慢速下層材料在不同 之近場暫態與穩態解………90
圖3-21 異向性慢速下層材料在 之近場暫態與穩態解……………91
圖3-22 異向性慢速下層材料在 之近場暫態與穩態解……………92
圖3-23 異向性慢速下層材料中場之暫態與穩態解………………93
圖3-24 異向性慢速下層材料在 之中場暫態與穩態解……………94
圖3-25 異向性慢速下層材料在 之中場暫態與穩態解……………95
圖3-26 異向性慢速下層材料遠場之暫態與穩態解………………96
圖3-27 異向性慢速下層材料在 之遠場暫態與穩態解……………97
圖3-28 異向性慢速下層材料在 之遠場暫態與穩態解……………98
圖3-29 等向性快速下層材料近場之暫態與穩態解………………99
圖3-30 等向性快速下層材料中場之暫態與穩態解………………100
圖3-31 等向性快速下層材料遠場之暫態與穩態解………………101
圖3-32 等向性快速下層材料在 之中場暫態解…………………102
圖3-33 等向性快速下層材料在 之中場暫態解…………………103
圖3-34 異向性快速下層材料在不同觀察點下近場之暫態解……104
圖3-35 異向性快速下層材料在不同觀察點下近場之暫態解……105
圖3-36 異向性快速下層材料在不同觀察點下近場之暫態解……106
圖3-37 異向性快速下層材料在不同觀察點下近場之暫態解……107
圖3-38 異向性快速下層材料在不同觀察點下近場之暫態解……108
圖3-39 異向性快速下層材料在不同慢度 之近場暫態解………109
圖3-40 異向性快速下層材料在不同慢度 之近場暫態解………110
圖3-41 異向性快速下層材料在不同 之近場暫態解……………111
圖3-42 異向性快速下層材料在不同 之近場暫態解……………112
圖3-43 異向性快速下層材料在 之近場暫態解…………………113
圖3-44 異向性快速下層材料在 之近場暫態解…………………114
圖3-45 異向性快速下層材料中場之暫態解………………………115
圖3-46 異向性快速下層材料在 之中場暫態解…………………116
圖3-47 異向性快速下層材料在 之中場暫態解…………………117
圖3-48 異向性快速下層材料遠場之暫態解………………………118
圖3-49 異向性快速下層材料在 之遠場暫態解…………………119
圖3-50 異向性快速下層材料在 之遠場暫態解…………………120
Abramowitz, M., and I. A. Stegun, Handbook of Mathematical Functions, New York, pp. 228-251 (1972).
Bahar, L. Y., “Transfer Matrix Approach to Layered Systems,” Proc. ASCE J. Eng. Mech. Div., Vol. 98, pp.1159-1172 (1972).
Bufler, H., “Theory of Elasticity of a Multilayered Medium,” Journal of Elasticity, Vol. 1, pp.125-143 (1971).
Cagniard, L., Reflexion et Refraction des Ondes Seismiques Progressives, Cauthuers-Villars, Paris (1939); Translated into English and revised by Flinn, E. A., and Dix, C. H., Reflection and refraction of Progressive Seismic Waves, McGraw Hill, New York (1962).
Choi, H. J., and Thangjithan, S., “Micro- and Macromechanical Stress and Failure Analyses of Laminated Composites,” Composites Science and Technology, Vol. 14, pp. 289-305 (1991).
de Hoop, A. T., Representation theorems for the displacement in an elastic solid and their application to elastodynamic diffraction theory, Doctoral dissertation, Technische hoegschool, Delft (1958).
Haskell, N., “The Dispersion of Surface Waves on Multilayered Media,” Bull. Seism. Soc. Am., Vol. 43, pp. 17-34 (1953).
Horgan, C. O., and Miller, K. L., “Antiplane Shear Deformations for Homogeneous and Inhomogeneous Anisotropic Linearly Elastic Solids,” ASME Journal of Applied Mechanics, Vol. 61, pp. 23-29 (1994).
Ing, Y. S., and Chen, C. C., “Transient Analysis of Anisotropic Multilayered Media Subjected to Dynamic Antiplane Loadings,” AIAA Journal, Vol. 41, pp. 720-732 (2003).
Kennett, B. L. N., and Kerry, N. J., “Seismic Waves in a Stratified Half Space,” Geophys. J. R. Astron. Soc., Vol. 44, pp. 557-583 (1979).
Lin, R. L. and Ma, C. C., “Antiplane Deformations for Anisotropic Multilayered Media by Using the Coordinate Transform Method,” ASME Journal of Applied Mechanics, Vol. 67, pp. 597-605 (2000).
Lin, W., and Keer, L. M., “Analysis of a Vertical Crack in a Multilayered Medium,” ASME Journal of Engineering for Industry, Vol. 56, pp. 63-69 (1989).
Liu, S. W., and Ma, C. C., “Transition from Transient Response to Steady State for a Layered Medium,” J. Acoust. Soc. Am., Vol. 112, pp. 377-384 (2002).
Miklowitz, J., The Theory of Elastic Waves and Wave Guides, North-Holland, Amsterdam (1978).
Ma, C. C., “Relationship of Anisotropic and Isotropic Materials for Antiplane Problems,” AIAA Journal, Vol. 34, pp. 2453-2456 (1996).
Ma, C. C., and Huang, K. C., “Analytical Transient Analysis of Layered Composite Medium Subjected to Dynamic In-Plane Impact Loadings,” Int. J. Solids and Structures, Vol. 33, pp. 4511-4529 (1995).
Ma, C. C., and Huang, K. C., “Exact Transient Solutions of Buried Dynamic Point Forces for Elastic Bimaterial,” Int. J. Solids and Structures, Vol. 33, pp. 4223-4238 (1996).
Ma, C. C., Liu, S. W., and Lee, G. S., “Dynamic Responses of a Layered Medium Subjected to Anti-plane Loadings,” Int. J. Solids and Structures, Vol. 38, pp. 9295-9312 (2001).
MŸller, G., “Theoretical Seismograms for Some Types of Point-Source in Layered Media: Part Ⅰ: Theory,” Z. Geophys., Vol. 34, pp. 15-35 (1968a).
MŸller, G., “Theoretical Seismograms for Some Types of Point-Source in Layered Media: Part Ⅱ: Numerical Calculations,” Z. Geophys., Vol. 34, pp. 247-371 (1968b).
MŸller, G., “Theoretical Seismograms for Some Types of Point-Source in Layered Media: Part Ⅲ: Single Force and Dipole Sources of Arbitrary Orientation,” Z. Geophys., Vol. 35, pp. 347-371 (1969).
Small, J. C., and Booker, J. R., “Finite Layer Analysis of Layered Elastic Materials Using a Flexibility Approach. Part 1-Strip Loadings,” International Journal for Numerical Methods in Engineering, Vol. 20, pp. 1025-1037 (1984).
Spencer, T. W., “The Method of Generalized Reflection and Transmission Coefficients,” Geophysics, Vol. 25, pp. 625-641 (1960).
Thomson, W. T., “Transmission of Elastic Waves Through a Stratified Solid Medium,” J. Appl. Phys., Vol. 21, pp. 89-93 (1950).
Xu, P. C., and Mal, A. K., “An Adaptive Integration Scheme for Irregularly Oscillatory Functions,” Wave Motion, Vol. 7, pp. 235-243 (1985).
Xu, P. C., and Mal, A. K., “Calculation of The Inplane Green’s Functions for a Layered Viscoelastic Solid,” Bull. Seism. Soc. Am., Vol. 77, pp. 1823-1837 (1987).
Yang, W., and Ma, C. C., “Orthotropic Transform for Planar Anisotropic Elasticity and Reduced Dependence of Elastic Constants,” Proc. Roy. Soc. London, Vol. AA454, pp. 1843-1855 (1998).
楊清利, “薄層材料系統剪力波之暫態及穩態波傳解析,” 國立台灣大學機械工程研究所碩士論文 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊