跳到主要內容

臺灣博碩士論文加值系統

(100.26.176.111) 您好!臺灣時間:2024/07/16 14:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊鎧溫
研究生(外文):Chuang, Kai-Wayne
論文名稱:在信用交易下一些確定性存貨模型之研究
論文名稱(外文):A Study of Some Deterministic Inventory Models under Trade Credit
指導教授:歐陽良裕歐陽良裕引用關係陳淼勝陳淼勝引用關係
指導教授(外文):Liang-Yuh OuyangMiao-Sheng Chen
學位類別:博士
校院名稱:淡江大學
系所名稱:管理科學學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:96
中文關鍵詞:存貨信用交易退化信產品非瞬間收到
外文關鍵詞:InventoryTrade CreditDeteriorating ItemsNoninstantaneous Receipt
相關次數:
  • 被引用被引用:1
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:1
在傳統的存貨模型中,通常假設零售商必需在產品送達時立即將貨款交付給供應商。然而,在實際商業交易行為中,供應商時常為了刺激市場的需求及增加營收,而給予零售商一段固定時間的付款期限。就零售商觀點而言,在貨款尚未支付之前,他可利用已售出之產品所取得的現金賺取利息;但貨款付清之後,則需支付未售出之產品資金積壓成本的利息。基於此原因,有很多學者探討信用交易在存貨系統中的影響。但以往有關信用交易的研究文獻,大多止於探討允許延遲付款的交易行為。在某些情況下,供應商為鼓勵零售商及早付款,而給予零售商現金折扣的優惠。例如:供應商提供零售商若在10天內支付貨款則給予1%的現金折扣;否則最遲在30天內應支付貨款,此信用條件記作 “1/10, net 30”。另一方面,有些產品例如新鮮蔬果、食品、藥物、酒精等揮發性液體、底片和電子元件等在正常的儲存過程中可能因為退化而使得存貨數量減少;亦即存貨水準除了因顧客的需求而減少外也因為退化而減少。所以,在面臨此類產品的存貨管理問題時,將產品退化的特性納入考量是必要的。此外,環顧現有文獻典籍,在存貨理論中另一頗為實際的非瞬間收到產品之訂購策略,討論信用交易對其影響的研究甚少被著墨。本論文試圖融合以往學者所提出的概念,以循序漸進的方式逐一探討含有信用交易的存貨問題,建構更為完善、使用範疇更為廣泛的存貨模型。
本論文係針對在信用交易下的存貨系統,提出五個確定性需求的存貨數
學模型。第二章討論允許延遲付款與有現金折扣下的存貨模型。在第三章中,進一步放寬不允許缺貨的假設,建立一個在允許延遲付款與有現金折扣下考慮部份欠撥的存貨模型。第四章則在產品退化率為具二參數韋伯分配的假設下,探討供應商提供允許延遲付款與有現金折扣的信用交易條件時的存貨問題。第五章則從另一個方向思考,首先探討允許延遲付款下非瞬間收到產品的存貨問題。接著,同時考慮允許延遲付款與有現金折扣下非瞬間收到產品的存貨問題。對於所提出的每一個模型,我們均建立簡單的定理及演算法來求得最適訂購策略,並且以數值範例說明所求模型的結果。
In the classical inventory model, it is tacitly assumed that payments must be paid to the supplier for the items immediately after receiving the consignment. However, in real business transactions, the supplier allows a certain fixed credit period to settle the account for stimulating retailer’s demand and increasing revenue. From the retailer’s viewpoint, during the credit period before payment must be made, he/she can generate sales revenue is deposited in an interest bearing account. At the end of this period, the retailer starts paying for the interest charges on the items in stocks. This phenomenon has prompted researchers to investigate the impacts of trade credit in the inventory systems. However, the extant papers only consider the effects of permissible delay in payments in the inventory model. In some situations, the supplier also may offer a cash discount to encourage retailer to pay for his purchases quickly. For example, the supplier offer a 1% discount off the price of the merchandise if the payment is made within 10 days; otherwise the full price of the merchandise is due within 30 days, and the credit terms denote as “1/10, net 30”. On the other hand, some products such as fruit, foodstuff, medicine, volatile liquids, photographic film and electronic components, etc. decrease under deterioration during their normal storage period. It makes the inventory level decrease not only by the demand, but also by the deterioration. As a result, when we discuss this kind of inventory management, it is necessary to consider the characteristic of deterioration. Moreover, viewing the domain of the noninstantaneous receipt model, existing literature discussing the trade credit is quite few. For this reason, this thesis attempts to involve the concepts of previous scholars, and seeks to formulate the more appropriate and extensive inventory models by gradually exploring the inventory system with trade credit.
This thesis proposes five deterministic inventory mathematical models for the inventory system under trade credit. In chapter 2, we discuss an inventory model under permissible delay in payments and cash discount. In chapter 3, then the model is further generalized to allow for shortages. In chapter 4, we discuss the problem of deterioration items under permissible delay in payments and cash discount, where the deterioration rate is a two-parameter Weibull distribution. In chapter 5, from another viewpoint, we first explore the problem of noninstantaneous receipt model under permissible delay in payments. Then, we propose a noninstantaneous receipt model to consider permissible delay in payments and cash discount, simultaneously. For all models proposed in this thesis, we establish a couple of easy-to-use theorems and algorithms to find the optimal order strategies, and utilize the numerical examples to illustrate the result of models.
目 錄
頁次
表目錄……………………………………………………………四
圖目錄……………………………………………………………五
使用符號一覽表…………………………………………………六
第一章 緒論……………………………………….……………1
1.1 研究動機與目的…………………………….…………1
1.2 相關文獻探討……………………………...……………3
1.3 本文結構…………………………..……….……………5
第二章 在允許延遲付款與有現金折扣下的存貨模型………...8
2.1 前言………………………..…………..….……………8
2.2 符號及假設…………………..…………..….………9
2.3 模型建立……..…………………………...….………11
2.4 範例…………………...…………………...…………21
第三章 在允許延遲付款與有現金折扣下考慮部份欠撥的存貨模型……………………………………………………23
3.1 前言………………………..…………..….…………23
3.2 符號及假設…………………..…………..….………24
3.3 模型建立……..………………………...….………24
3.4 範例…………………...………………......…………36
第四章 在允許延遲付款與有現金折扣下之退化性產品的存貨模型…………………………………………………40
4.1 前言………………………..…………..….…………40
4.2 符號及假設…………………..…………..….………41
4.3 模型建立……..………………………...….………42
4.4 範例…………………...………………......…………55
第五章 在信用交易下非瞬間收到產品的存貨模型………….58
5.1 前言…………………...………………......…………58
5.2 在允許延遲付款下非瞬間收到產品的存貨模型59
5.2.1 符號及假設…………………..…………..….………59
5.2.2 模型建立……..………………………...….………60
5.2.3 範例…………………...………………......…………68
5.3 在允許延遲付款與有現金折扣下非瞬間收到產品的存貨模型……………………………………..70
5.3.1 符號及假設…………………..…………..….………70
5.3.2 模型建立……..………………………...….………71
5.3.3 範例…………………...………………......…………79
第六章 結論…………………...………………......…………84
6.1 主要研究成果……...………………......…………84
6.2 未來研究方向……...………………....….…………88
參考文獻…………………...………………......………………90
附錄一………………...………………......……………….…95
表 目 錄
表號 頁次
表 2.1 例題一不同的訂購成本下之最適解…………………22
表 3.1 例題二不同的 、 和 值下之最適解……………39
表 4.1 例題三不同的 、 和 值下之最適解……………57
表 5.1 例題四不同的訂購成本下之最適解…………………69
表 5.2 例題五不同的訂購成本下之最適解…………………81
表 5.3 例題六不同的訂購成本下之最適解…………………82
表 5.4 例題七不同的訂購成本下之最適解…………………83
圖 目 錄
圖號 頁次
圖 1.1 本研究結構圖………………………………………7
圖 2.1 存貨水準與時間之關係圖………………………………11
圖 3.1 存貨水準與時間之關係圖………………………………25
圖 4.1 存貨水準與時間之關係圖………………………………43
圖 5.1 存貨水準與時間之關係圖………………………………60
參考文獻
[1] Aggarwal, S. P. and Jaggi, C. K. (1995), “Ordering policies of deteriorating items under permissible delay in payments,” Journal of the Operational Research Society, Vol. 46, pp. 658-662.
[2] Brigham, E. F. (1995), Fundamentals of Financial Management, The Dryden Press, Florida.
[3] Chakrabarty, T., Giri, B.C. and Chaudhuri, K.S. (1998), “An EOQ model for items with Weibull distribution deterioration, shortages and trended demand: an extension of Philip''s model,” Computers & Operations Research, Vol. 25, pp. 649-657.
[4] Chapman, C. B., Ward, S. C., Cooper, D. F. and Page, M. J. (1984), “Credit policy and inventory control,” Journal of the Operational Research Society, Vol. 35, pp. 1055-1065.
[5] Chang, H. J. and Dye, C. Y. (2001), “An inventory model for deteriorating items with partial backlogging and permissible delay in payments,” International Journal of Systems Science, Vol. 32, pp. 345-352.
[6] Chen, J. M. (1998), “An inventory model for deteriorating items with time-proportional demand and shortages under inflation and time discounting,” International Journal of Production Economics, Vol. 55, pp. 21-30.
[7] Chu, P., Chung, K. J. and Lan, S. P. (1998), “Economic order quantity of deteriorating items under permissible delay in payments,” Computers & Operations Research, Vol.25, pp. 817-824.
[8] Chung, K. H. (1989), “Inventory control and trade credit revisited,” Journal of the Operational Research Society, Vol. 40, pp. 495-498.
[9] Chung, K. J. (1998), “A theorem on the determination of economic order quantity under conditions of permissible delay in payments,” Computers & Operations Research, Vol. 25, pp. 49-52.
[10] Covert, R. B. and Philip, G. S. (1973), “An EOQ model with Weibull distribution deterioration,” AIIE Transactions, Vol. 5, pp. 323-326.
[11] Dave, U. and Patel, L. K. (1981), “(T, Si) policy inventory model for deteriorating items with time proportional demand,” Journal of the Operational Research Society, Vol. 32, pp. 137- 142.
[12] Elsayed, E. A. and Teresi, C. (1983), “Analysis of inventory system with deteriorating items,” International Journal of Production Research, Vol. 21, pp. 449-460.
[13] Ghare, P. M. and Schrader, G. H. (1963), “A model for exponentially decaying inventory system,” International Journal of Production Research, Vol. 21, pp. 449-460.
[14] Goyal, S. K. (1985), “Economic order quantity under conditions of permissible delay in payments,” Journal of the Operational Research Society, Vol. 36, pp. 335-338.
[15] Jamal, A. M. M., Sarker, B. R. and Wang, S. (1997), “An ordering policy for deteriorating items with allowable shortage and permissible delay in payment,” Journal of the Operational Research Society, Vol. 48, pp. 826-833.
[16] Kingsman, B. G. (1983), “The effect of payment rules on ordering and stocking in purchasing,” Journal of the Operational Research Society, Vol. 34, pp. 1085-1098.
[17] Liao, H. C., Tsai, C. H. and Su, C. T. (2000), “An inventory model with deteriorating items under inflation when a delay in payment is permissible,” International Journal of Production Economics, Vol. 63, pp. 207-214.
[18] Misra, R. B. (1975), “Optimum production lot size model for a system with deteriorating inventory,” International Journal of Production Research, Vol. 13, pp. 495-505.
[19] Philip, G. C. (1974), “A generalized EOQ model for items with Weibull distribution deterioration,” AIIE Transactions, Vol. 6, pp. 159-162.
[20] Sachan R. S. (1984), “On (T, Si) inventory policy model for deteriorating items with time proportional demand,” Journal of the Operational Research Society, Vol. 35, pp.1013-1019.
[21] Sarker, B. R., Jamal, A. M. M. and Wang, S. (2000a), “Optimal payment time under permissible delay in payment for products with deterioration,” Production Planning & Control, Vol.11, pp.380-390.
[22] Sarker, B. R., Jamal, A. M. M. and Wang, S. (2000b), “Supply chain models for perishable products under inflation and permissible delay in payment,” Computers & Operations Research, Vol.27, pp. 59-75.
[23] Stevenson, W. J. (2002), Operations Management, McGraw-Hill, New York.
[24] Tadikamalla, P. R. (1978), “An EOQ inventory model for items with gamma distribution,” AIIE Transactions, Vol. 10, pp. 108-112.
[25] Taylor III, B. W. (1999), Introduction to Management Science, Prentice-Hall, New Jersey.
[26] Teng, J. T. (2002), “On the economic order quantity under conditions of permissible delay in payments,” Journal of the Operational Research Society, Vol. 53, pp. 915-918.
[27] Teng, J. T., Chern, M. S., Yang, H. L. and Wang, Y. J. (1999), “Deterministic lot-size inventory models with shortages and deterioration for fluctuating demand,” Operations Research Letters, Vol. 24, pp. 65-72.
[28] Wee, H. M. (1995), “A deterministic lot-size inventory model for deteriorating items with shortages and a declining market,” Computers & Operations Research, Vol. 22, pp. 345-356.
[29] Wee, H. M. (1997), “A replenishment policy for items with a price-dependent demand and a varying rate of deterioration,” Production Planning & Control, Vol. 8, pp. 494-499.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top