(3.235.25.169) 您好!臺灣時間:2021/04/20 17:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴怡君
研究生(外文):Yi-Chun Lai
論文名稱:多酚類化合物誘導皮膚癌細胞之凋亡機制探討
論文名稱(外文):The mechanism of Flavonoids-induced apoptosis in skin cancer cells
指導教授:李婉若
指導教授(外文):Woan-Ruoh Lee
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:92
中文關鍵詞:多酚類化合物細胞凋亡皮膚癌自由基
外文關鍵詞:Flavonoidsapotosisskin cancerReactive oxygen speciesCaspase-3Bcl-2
相關次數:
  • 被引用被引用:4
  • 點閱點閱:375
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:113
  • 收藏至我的研究室書目清單書目收藏:0
Flavonoids廣泛存在於自然界中,屬於多酚類化合物其中一類,文獻指出flavonoids具有抗發炎、癌症預防發生以及抑制腫瘤等功用。本研究的目的在於探討結構相類似之flavonoids於皮膚癌細胞所造成細胞毒性的機制為何。三種惡性程度不同的皮膚癌細胞A431(人類上皮細胞癌)、RPMI 7951(人類惡性黑色素細胞瘤)以及Hs 695T(人類非黑色素細胞之黑色素瘤)處理17種結構相類似之Flavonoids(Flavanone, 2’-OH Flavanone, 4’-OH Flavanone, 6’-OH Flavanone, 7’-OH Flavanone, Naringenin, Narigin, Taxifolin; Flavone, 3-OH Flavone, 5-OH Flavone, 7-OH Flavone, Baicalein, Kaempferol, Quercetin, Morin and Myricetin)後均有不同程度的毒性反應,其中以2’-OH Flavanone及3-OH Flavone對該三種癌細胞最具細胞毒性。Acridine orange染色得知2’-OH Flavanone及3-OH Flavone會誘導癌細胞發生染色質濃染的情形。此外本實驗發現2’-OH Flavanone 會造成sub-G1比例升高、caspase-3及PARP的活化情形,而利用西方點墨法亦檢測出三株皮膚癌細胞的Bcl-2表現量會隨時間增加下降,而在p53、p21、BclxL、Bax、Bad及Mcl-1等則無明顯變化。上述的情況在3-OH Flavone組並無被觀察到同樣的情形。以DCFHDA方式偵測2’-OH Flavanone與3-OH Flavone對細胞的自由基含量是否有影響的結果顯示2’-OH Flavanone會促進自由基產生,而3OH Flavone會降低細胞內自由基的含量。在動物實驗方面,在BALB/c-Hfhllnu mice臀部兩側皮下注射106/ site A431細胞,人工誘發腫瘤生長約至50 mm3後以塗抹方式及直接注射腫瘤的方式分別給予25 mg/ site, 及50 mg/ site 之2’-OH Flavanone。結果顯示直接注射2’-OH Flavanone 之25mg/ site及50 mg/ site明顯抑制癌細胞之生長。結果推論為2’-OH Flavanone可能是經由產生自由基活化caspase-3及PARP最後造成A431、RPMI 7951及Hs 695T 皮膚癌細胞之細胞凋亡。而在動物實驗證實2’-OH Flavanone的確能抑制皮膚癌細胞的生長。

Flavonoids are a class of polyphenolic compounds widely distributed in the plant kingdom, which display a variety of biological activities, including anti-inflammatory activity, chemoprevention and tumor growth inhibition. The aim of the study was to investigate the mechanism of structurally related flavonoids-induced cytotoxicity in skin cancer cells. Three different malignant cell lines, human epidermoid carcinoma (A431), human malignant melanoma (RPMI 7951) and amelanotic melanoma (Hs 695T) were treated with 17 structurally related Flavonoids including Flavanone, 2’-OH Flavanone, 4’-OH Flavanone, 6’-OH Flavanone, 7’-OH Flavanone, Naringenin, Narigin, Taxifolin; Flavone, 3-OH flavone, 5-OH Flavone, 7-OH Flavone, Baicalein, Kaempferol, Quercetin, Morin and Myricetin. 2’-OH Flavanone and 3-OH Flavone showed obvious cytotoxic effects in three cancer cell lines by MTT assay. Chromatin condensation in using acridine orange stain was observed in A431, RPMI 7951 and Hs 695T with 2’-OH Flavanone and 3-OH Flavone. Treatment with 2’- OH Flavanone but not 3- OH Flavone causes caspase-3 activation and cleavage of poly(ADP) ribosepolymerase (PARP); with higher sub-G1 ratio by flow cytometric analysis. ROS (Reactive oxygen species)was detected in 2’- OH Flavanone treated cells by DCHF-DA assay. Waf-1/p21 protein was induced only in 2’-OH Flavanone-treated A431 cell line. Moreover, 2’-OH Flavanone-induced apoptosis is involved in down regulation of the level of Bcl-2, but not Bcl-xL, Mcl-1, Bax and Bad. We conclude the cytotoxic effects induced by 2’-OH Flavanone and 3- OH Flavone through different mechanisms. In vivo study, BALB/c-Hfhllnu mice were injected with A431 cells 106/ site side by side. when tumor size grows to 50 mm3, mice were received 25 mg/ site and 50 mg/ site 2’-OH Flavanone by topical treatment(each day) and local injection(twice a week) for 2 weeks. The data indicated that tumor size was obviously decreased when the mouse was injected 50 mg 2’-OH Flavanone. In conclusion, 2’-OH Flavanone plays as a pro-oxidant and induces apoptosis in A431, RPMI 7951 and Hs 695T skin cancer cells. In vivo study, the result indicated that 2’-OH Flavanone inhibited the growth of skin cancer cells.

目錄
第一節 英文摘要……………………………………………………………………2
第二節 中文摘要 …………………………………………………………………..5
第三節 前言 ……………………………………………………………………….7
一、 多酚類化合物在癌症研究的可行性 …………………………………….8
二、 細胞凋亡(apoptosis)…………………………………………………….9
三、 細胞凋亡的相關因子 ……………………………………………………10
1. 細胞週期的變化 ……………………………………………………..10
2. Caspase的活化 ………………………………………………………11
附圖(一) ……………………………………………………………12
3. PARP的活化 …………………………………………………………12
4. Bcl-2系列與細胞凋亡的關係 ……………………………………….13
5. ROS(Reactive oxygen species)與細胞凋亡的關係 ………………14
四、 Apoptosis的執行面 ……………………………………………………...15
附圖(二)………………………………………………………………..16
附圖(三)………………………………………………………………..17
第四節 材料與方法 ………………………………………………………………18
一、 材料 ………………………………………………………………………17
1. 細胞培養亦的配置……………………………………………………17
2. 藥物 …………………………………………………………………..18
3. 一般試劑及一般溶液之配置 ………………………………………..20
4. 抗體 …………………………………………………………………..22
5. 儀器 …………………………………………………………………..23
二、 實驗方法 …………………………………………………………………23
1. 細胞培養方法 ………………………………………………………..23
2. Flavanoids對三種皮膚癌細胞之劑量依循性 ………………………24
3. 2’-hydroxyflavanone及3-hydroxyflavone對三種皮膚癌細胞造成染色質濃染之時間依循性 ……………………………………………….25
4. 流式細胞儀定量Flavonoids對三種皮膚癌細胞之sub-G1比例….25
5. 西方墨漬法偵測Flavonoids對三種皮膚癌細胞apoptosis相關蛋白質變化之時間依循性 …………………………………………………26
6. DPPH測試結構相類似Flavonoids之抗氧化程度 ……………….26
7. Flavomoids對三種皮膚癌細胞caspase-1及caspase-3活性變化
之時間依循性…………………………………………………………27
8. 檢測Flavonoids對三種皮膚癌細胞ROS的變化情形 …………..28
第五節 結果 ……………………………………………………………………..31
第六節 討論 ……………………………………………………………………..42
第七節 結論 ……………………………………………………………………..49
第八節 圖與表 …………………………………………………………………..51
參考文獻 …………………………………………………………………………..80

Adams, J.M. and Cory, S. (1998).The Bcl-2 protein family: arbiters of cell survival. Science, 281, 1332-1326
Ahmad, N. Feyes, D.K., Nieminen, A.L., Agarwal, R. and Mukhtar, H. (1997). Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle in human carcinoma cells. J. Nat. Cancer Inst., 89, 1881-1886
Ahmad N., Gupta S., Husain MM., Heiskanen KM. and Mukhtar H. (2000). Differential antiproliferative and apoptotic response of sabguninarine for cancer cells versus normal cels. Clin. Cancer Res., 6, 1524-1528
Alder V, Yin Z, Tew KD, Ronai Z. (1999). Role of redox potential and reactive oxygen species in stress aignalling. Oncogene, 18, 6104— 6111
Alcocer F., Whitley D., Salazar-Gonzalez JF., Jordan WD., Sellers MT., Eckhoff DE., Suzuki K., Macrae C. and Bland KI. (2002). Quercetin inhibits human vascular smooth muscle cell proliferation and migration. Surgery, 131, 198- 204
Amarante-Mendes, G. P. (1998). Anti-apoptotic oncogenes prevent caspase-dependent and —independent commitment for cell death. Cell Death Differ., 5, 298-306
Antonsson, B. and Martinou, J.C. (2000). The Bcl-2 protein family. Experimental Cell Research.Cell Res. 256, 50-57
Akagi, K., Hirose, M., Mizoguchi, Y., Ito, N., Shirai, T. (1995). Modulating effects of ellagic acid, vanillin and quercetin in a rat medium multiorgan carcinogenesis modle. Cancer Lett., 94, 113-121
Arrardi, L. D. and Jacks, T. (1999). The role of p53 in timor suppression: lessons from house models. Cell Mol. Life Sci., 55, 48-63
Aviram M. and Fuhrman B. (2002). Wine flavonoids protect against LDL oxidation and atherosclerosis. Ann. N.Y. Acad. Sciences, 957, 146-161
Bardeesy N., Beckwith, J. B. and Pelletier, J. (1995). Clonal expansion and attenuate apoptosis in Wilms’ tumors are associated with p53 gene mutations. Cancer Res., 55, 215-219
Beresford, P.J. (2001). Granzyme A activates an endoplasmic reticulum-associated caspaseindependent nuclease to induce single-stranded DNAnicks. J. Biol. Chem., 276, 43285—43293
Blagosklonny, M.V. (2000). Cell death beyond apoptosis. Leukemia, 14, 1502—1608
Pan, M. H., Liang Y. C., Lin-Skiau, S. Y., Zho, N. Q., Ho, C. T. and Lin, J. K. (2000). J. Agric. Food Chem., 48, 6337-6346
Bossy-Wetzel E, Nawmeyer, D.D. and Green, D.R. (1998). Mitochondrialtream cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmenbrane depolarization. EMBO J., 17,37-49
Boldin, M. P., Goncharov, T. M., Goltsev, Y. V. and Wallach, D. (1996). Involvement of MACH. An novel MORT1/ FADD-interacting protease, in Fas/ Apo-1 and TNF receptor-induced cell death. Cell, 803-815
Bunn HF, Poyton RO. (1996). Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev., 76, 839— 885
Cardone, M.H., Salvesen, G.S., Widmann, C. Johnson, G. and Frish, S.M. (1997). The regulation of anokis : MEKK-1 activation requires cleavage by caspase. Cell, 90, 315-323
Carvalho J.C.T., Ferreira L.P., da Silva Santos L., Correˆ J.C., L.M., de Oliveira Campos J.K. Bastos and Sarti S.J. (1999). Anti-inflammantory activity of srude extract frome the fruits of pierodon emarginatus vog. Journal of Ethnopharmaco., 173—177
Carmody, R. J., MacGowan, A. J. and Cotter, T. G. (1999). Reactive oxygen species as mediators of photoreceptor apoptosis in vitro. Exp. Cell Res., 520-530
Chou, J.J., Li, H.,Salvesen, G.S., Yuan, J. and Wagnar, G. (1999). Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell, 96, 615-624
Chou, Y.C., Uehara, N., Lowry, J. R. and Shyamala, G. (2003). Mammary epithelial cells of PR-A transgenic mice exhibit distinct alterations in gene expression and growth potential associated with transformation. Carcinogenesis, 24, 403-409
Yang, C. S., Landau, J. M., Huang, M. T. and Newmark HL. (2001). Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu. Rev. Nutr., 21, 381-406
Cipak, L., Rauko, P., Miadokova, E., Cipakova, I. and Novotny, L. (2003). Effects of flavonoids on cisplatin-induced apoptosis of HL-60 and L1210 leukemia cells. Leukemia Res., 27, 65-72
Clarke, A.R., Purdie, C.A., Harrison, D.J., Morris, R.G. and Wyllie, A.H. (1993). Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature, 362, 849-852
Crowe, D.L., Boardman, M.L., Fong, K.S. (1998). Anti-Fas antibody differentially regulates apoptosis in Fas ligand resistant carcinoma lines via the caspase 3 family of cell death proteases but independently of bcl2 expression. Anticancer Res., 18, 3163—7310
D’Amours, D., Desnoyers, S., D’silva, I. and Poirier, G. G. (1999). Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J., 249-268
Didenko, V.V., Ngo, H., Minchew, C.L., Boudreaux, D.J., Widmayer, M.A. and Baskin, D.S. (2002). Caspas-3-dependent and —independent apoptosis in focal brain ischemia. Mol. Med., 8, 347-352
Feng, L., Balakir, R., Precht, P., and Horton, W. E., Jr. (1999). Bcl-2 regulates chondrocyte morphology and aggrecan gene expression independent of caspase activation and full apoptosis. J. Cell. Biochem. 74, 576—586
Ferri, K. R. and Kroemer, G. (20001). Organelle-apecifoc initiation of cell death pathways. Nat. Ceell Biol., 3, E225-E263
Fleury, C., Mignotte, B. and Vayssiere, J. L. (2002). Biochemi, 131-141
Formica, J.V. and Regelson, W. (1995). Mitochondrial reactive oaygen species in cell death signaling. Food chem. Toxicol., 33, 1061-1081
Grave, J.D., Gotoh, Y., Draves, K.E. Ambrose, D., Clark, E.A. and Krebs, E.G. (1998). Review of the biology of Quercetin and related flavanoids. EMBO J., 17, 224-2234
Greenlind, L. J. S., Deckwerth T. L. and Johnson, E. M. (1995). Caspase-mediated activation and induction of apoptosis by the mammalian Ste20-like kinase Mst-1. Neuron, 303-315
Gross, A., McDonnell, J. M., and Korsmeyer, S. J. (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899—1911
Halliwell, B. (1992). Reactive oxygen species and the central nervous system. J. Neurochem., 59, 1609-1623
Halliwell, B. and Gutteridge, J. M. (1985). Oxygen radicals and the nervous system. Trends Neurosci., 8, 22-26
Hamilton. Superoxide dismutase delays neuronal apoptosis: a role for reactive oxygen species in programmed neuronal death. Cancer Medicine e.5
Harper, J. W., Elledge, S. J. and Keyomarsi, K. (1995). Inhibition of cyclin-dependent kinases by p21. Mol. Cell Biol., 6, 387-400
Hearps, A.C., Burrows, J., Connor, C.E., Woods, G.M., Lowenthal, R.M. and Ragg, S.J. (2002). Mitochondrial cytochrome c release proced transmbrane depolarization and caspase-3 activation during ceramide-induced apoptosis of Jurkat cells. Apoptosis, 7, 387-894
Hengartner, M.O. (2000). The biochemistry of apoptosis. Nature, 407, 770-776
Hocjenbery, D., Nunez, G., Milliman, C., Schreiber, R.D. and Korsmeyer, S.J. (1990). Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature, 348, 334-336
Hochman, A., Liang, H., Offen, D., Melamed, E., and Sternin, H. (2000). Developmental changes in antioxidant enzymes and oxidative damage in kidneys, liver and brain of bcl-2 knockout mice. Cell. Mol. Biol. 46, 41—52
Hockenbery, D. M., Oltvai, Z. N., Yin, X. M., Milliman, C. L., and Korsmeyer, S. J. (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75, 241—251
Hofmann, K., Bucher, P. and Tschopp, J. (1997). The CARD domain: a new apoptotic signaling motif. Trends Biochem. Sci., 155-156
Hsieh, S.Y., Liaw, S. F., Lee, S. N., Hsieh, P. S., Lin, K. H, Chu, C. M. and Liaw, Y. F. (2003). Abberent caspase-activated DNase (CAD) transcri[ts in human hepatoma cells. British J. Cancer, 210-216
Hussein, M.R., Haemel, A.K. and Wood, G.S. (2003). Apoptosis and melanoma: molecular mechanisms. J. Pathol., 275-288
Ito, N., Kojima, T., Nagata, H., Ozeki, N., Yoshida, Y. and Nonami, T. (2002). Apoptosis induced by culturing MH134 cells in the presence of porcine skin gelatin in vitro. Cancer Bio. & Radiopharm., 17, 379-384
Jager, R., Herzer, U., Schenkel, J. and Weiher, H. (1997). Overexpression of Bcl-2 inhibits alveolar cell apoptosis during involution and accelerate c-myc-induced tumorgenesis of the mammary gland in transgenic mice. Oncogene, 15, 1787-1795
Jakubowicz-Gil, J., Rzymowska, J. and Gawron, A. (2002). Quercetin, apoptosis, heat shock. Biochem. Pharmaco., 64, 1591-1595
Jiang, D., Jha, N. Boonplueang, R. and Anderson J. K. (2001). Caspase-3 inhibition attenuates hydrogen peroxide-induced DNA fragmentation but not cell death in neuronal PC12 cells. J. Neurochem., 76, 1745-1755
Johnson, D. E. (2000). Noncaspase preotease in apoptosis. Leukemia, 14, 1695-1703
Kane, D. J., Sarafian, T. A., Anton, R., Hahn, H., Gralla, E. B., Valentine, J. S., Ord, T., and Bredesen, D. E. (1993) Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262, 1274—1277
Kaufmann, S. H., Desnoyers, S., Ottaviano, Y. and Davidson, N. E. (1993). Specific proteolyric cleavage of poly(ADP-ribose) polymerase: on early marker of chemotherapy-induced apoptosis. Cancer Res., 3976-3985
Kotamraju, S., Konorev, E. A., Joseph, J., Kalyanaraman, B. (2000) Doxorubicin -induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. Role of reactive oxygen and nitrogen species. J. Bio. Chem, 275, 33585-33592
Korsmeyer S. J. (1992) Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood 80, 879—886
Kuida, K., Zheng, T. S., Na, S., Kuan, C. Yang, D., Karasuyama, H. and Rakic, P. (1996). Decreased apoptosis in the brain abd premature lethality in CPP32-deficient mice. Nature, 368-372
Lacour, S., Micheau, O., Hammann, A., Drouineaud, V., Tschopp, J., Solary, E. and Dimanche-Boitrel, M.T. (2003). Chemotherapy enhances TNF-related apoptosis-inducing ligand DISC assembly in HT29 human colon camcer cells. Oncogene., 1807-1816
Lee JI, Burckart GJ. (1998). Nuclear factor kappa B: important transcription factor and therapeutic target. J Clin Pharmacol, 38, 981— 993
Lee, L. T., Huang, Y. T., Hwang, J. J., Lee, P. P., Ke, F. C. Nair, M. P., Kanadaswam, C. and Lee, M. T. (2002). Blockade of the epidermal growth factor receptor tyrosine kinase activity by quercetin and luteolin leads to growth inhibition and apoptosis of pancreatic tumor cells. Anticancer Res., 22, 1615-1627
Legault J, Carrier C, Petrov P, Renard P, Remacle J and Mirault M-E. (2000). Mitochondrial GPx1 decreases induced but not basal oxidative damage to mtDNA in T47D cells. Biochem. Biophys. Res. Commun., 272, 416—422
Li, Y., Raffo, A.J., Drew, L., Mao, Y., Tran, A., Petrylak, D.P. and Fine, R.L. (2003). Fas-mediated apoptosis is dependent on wilde-type p53 status in human cancer cells expressing a temperature-sensitive p53 mytant alanine-143. Cancer Res., 63, 1527-1533
Li, L., Zhu, H., Xu, C.J and Juan, J. Cleavage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 94, 491-501
Lindahl, T., Satoh, M. S., Poirier, G. G. and Klungland, A. (1995). Post -translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. TIBS, 405-411
Liu, Y., Cox, S. R., Morita, T., and Kourembanas, S. (1995). Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5’ enhancer. Circ. Res., 77, 638—643
Lowe, S.W. and Lin, A.W. (12000). Apoptosis in cancer. Carcinogenesis, 21,485-495
Lowe, S.W., Schmitt, E.M., Smith, S.W., and Jacks, T. (1993). P53 is required for regulation-induced apoptosis in mouse thymocytes. Nature, 362, 847-849
Luo, X., Budiharjo, I. Zou, H., Slaughter, C. and Wang, X. (1998). Bid, a Bcl-2 interacting protein, mediates cytochrome c release frome mitochondrial in response to activation of cell surface receptors. Cell, 94, 481-490
Manfredi, G., Kwong, J.Q., Oca-Cossio, J.A., Woischnik, M., Gajewski, C.D., Martushova, K., D'Aurelio, M. Friedlich, A.L. and Moraes, C.T. (2003). Bcl-2 improves oxidative phosphoylation and modulates adenine nucleotide translation in mitochondrial of cells harboring mutant mtDNA. J. Biol. Chem., 278, 5639-5645
Manna S. Zhang K., H. J., Tao Yan, Oberley L. W., and Aggarwal B. B. (1999). J. Biol. Chem., 279, 13245—13254
Maulik N, Yoshida T and Das DK. (1999) Regulation of cardiomyocyte apoptosis in ischemic reperfused mouse heart by glutathione peroxidase. Mol. Cel.l Biochem., 196, 13—21
Majina, H. j., Oberley, T. D., Furukawa, K. Mattson, M. P., Yen, H.C., and Szeda, L. I. (1998). Prevention of mitochondrial injury by manganese superoxide dismutase reveals a primary mechanism for alkaline-induced cell death. J. Biol. Chem., 8217-8224
Masson, N., Willam, C., Maxwell, P. H., Pugh, C. W., and Ratcliffe, P. J. (2001). Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J., 20, 5197—5206
Marone, M., D'Andrilli, G., Das, N., Ferlini, C., Chatterjee, S. and Scambia, G. (2001). Quercetin abrogates taxol-mediated signaling by inhibiting multiple kinases Experimental Cell Res., 270, 1-12
McCurrach, M. E., Connor, T. M., Knudson, C. M. Korsmeyer, S. J. and Lowe, S.W. (1997). Bax-defficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc. Natl. Acad. Sci. USA., 2345-2349
McDonnel, J.M., Fushman, D., Milliman, C.L., Korsmeyer, S.J. and Cowburn, D. (1999). Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. Cell, 96, 625-634
McVean, M., Weinberg, W.C. and Pelling, J.C. (2002). A p21(waf1)-independent pathway for inhibitory phosphorylation of cyclin-dependent kinase p34(cdc2) and concomitant G(2)/M arrest by the chemopreventive flavonoid apigenin. Mol. Carcinog., 33, 36-43
Medema, R.H. Klompmaker, R. and Rijksen, G. (1998). p21waf1 can block cells at two points in the cell cycle, but does not interfere with processive DNA-replication or stress-activated kinases. Oncogene, 16, 431-441
Mirkovic, N., Voehringer, D. W., Story, M. J., McConkey, D. J., McDannell, T. J. and Meyn, R. E. (1997). Resistance to radiation-induced apoptosis in Bcl-2-expressing cells is reversed by depleting cellular thiols. Oncogene, 15, 1461-1470
Miyajima, A., Nakashima, J., Yoshioka, K., Tachibana, M., Tazaki, H. and Murai, M. (1997). Role of reactive oxygen species in cis-dichlorodiammineplatinum-induced cytotoxicity on bladder cancer cells. British J. Cancer, 76, 206-210
Mthiasen, I. S. (1999). Apoptosis induced by vitamin D compounds in breast cancer cells is inhibited by Bcl-2 but not involved known caspase or p53. Cancer Res., 59, 4808-4856
Nicholson, D. W. and Thornberry, N. A. (1997). Apoptosis. Life and death decisions. Science, 299-306
Nuñez, G., Benodict, M.A. and Hu, Y. (1998). Caspases: the proteases of the apoptotic pathway. Oncogene, 17, 3237-3245
Gao Ning , Ding M., Zheng J. Z., Zhuo Zhang, Leonard S. S., Liu K. J.
Shi Xianglin and Jiang B. H. (2002). Vanadate-induced expression of hypoxia-inducible factor 1 alpha and vascular endothelial growth factor through phosphatidylinositol 3-kinase/Akt pathway and reactive oxygen species. J. Biolo.Chem., 35, 31963—31971.
Owen RW., Giacosa A., Hull WE., Haubner R., Spiegelhalder B. and Bartsch H. (2000). The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur. J. Cancer, 36, 1235-1247
Park B. K., Heo M. Y. and Kim H. P. (2001). Inhibition of TPA-induced cyclooxygenase-2 expression and skin inflammation in mice by wogonin, a plant flavone from Scutellaria radix. Eur. J. Pharmacol., 425, 153—157
Pennacchio, L. A. (1998). Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cyctein B-deficient mice. Nat. Genet., 153, 999-1009
Pias, E.K. and Aw, T.Y. (2002). Early redox imbalance mediates hydroperoxide-induced apoptosis in mitotic competent undifferentiated PC-12 cells. Cell Death & Differentiation, 9, 1007-1016
Richter, M., Ebermann, R., Marian, B. (1999). Quercetin-induced apoptosis in colorectal tumor cells: possible role of EGF receptor signaling. Nutr. Cancer, 34, 77-99
Plaumann, B., Fritsche, M., Rimpler, H., Brander, G. and Hess, R.D. (1996). Flavonoids activate wild-type p53. Oncogene, 13, 1605-1614
Rafi, M.M., Vastano, B.C., Zhu N. and Ho, C.T. (2002). Novel polyphenol molecule isolated from licorice root (Glycrrhiza glabra) induces apoptosis, G2/M cell cycle arrest, and Bcl-2 phosphorylation in tumor cell lines. J. Agric. Food Chem., 50, 667-684
Reed JC. Bidwai AP. Glover CV. (1994). Cloning and disruption of CKB2, the gene encoding the 32-kDa regulatory beta'-subunit of Saccharomyces cerevisiae casein kinase II. J. Cell Biol. 124, 1—6
Schwandner O. Bruch HP. Broll R. (2002). Prognostic significance of p21 and p27 protein, apoptosis, clinical and histologic factors in rectal cancer without lymph node metastases. European Surg. Res., 34, 389-396
Sarafian, T. A., Vartvarian, L., Kane, D. J., Bredesen, D. E., and Verity, M. A. (1994) bcl-2 expression decreases methyl mercury-induced free-radical generation and cell killing in a neural cell line. Toxicol. Lett. 74, 149—155
Soengas, M. S., Alarcon, R. M., Yoshida, H., Giaccia, A. J., Hakem, R., Mak. T. w. and Lowe, S. W. (1999). Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science, 284, 156-159
Spector, A., Yang, Y., Ho, Y.-S., Magnenat, J.-L., Wang, R.-R., Ma, W., and Li, D. W-C. (1996). Variation in cellular glutathione peroxidase activity in lens epithelial cells, transgenics and knockouts does not significantly change the response to H2O2 stress. Exp. Eye Res. 62, 521—540
Srivastava M. Ahmad N. Gupta S. and Mukhtar H. (2001). Involvement of Bcl-2 and Bax in photodynamic therapy-mediated apoptosis. Antisense Bcl-2 oligonucleotide sensitizes RIF 1 cells to photodynamic therapy apoptosis. J. Biol. Chem., 276, 15481-15488
Takeuchi J, Hirota K, Itoh T, Shinkura R, Kitada K, Yodoi J. (2000). Thioredoxin inhibits tumor necrosis factor- or interleukin-1-induced NF-kappaB activation at a level upstream of NF-kappaB-inducing kinase. Antioxid. Redox. Signal., 2, 83— 92
Torriglia, A. (1998). L-DNase II, a molecule that links proteases and endonucleases in apoptosis, derives from the ubiquitous serpin leukocyte elastase inhibitor. Mol. Cell. Biol., 18, 3612—3619
Tsujimoto, Y., Cossman, J., Jaffe, E. and Croce, C.L. (1985). Involvement of the bcl-2 gene in human follicular lymphoma. Science, 228, 1440-1443
Ueda, S., Nakamura, H., Masutani, H., Sasada, T., Takabayashi, A., Yamaoka, Y. and Yodoi, J. (2002). Baicalin induces apoptosis via mitochondrial pathway as prooxidant. Mol. Immuno., 38, 781-791
Ukomadu, C. and Dutta, A. (2003). Inhibition of cdk2 activating phosphorylation by mevastatin. J. of Bio. Chem., 278, 4840-4846
Vairo, G., Soos, T. J., Upton, T. M., Zalvide, J., DeCaprio, J. A., Ewen, M. E., Koff, A., and Adams, J. M. (2000). Bcl-2 retards cell cycle entry through p27(Kip1), pRB relative p130, and altered E2F regulation. Mol. Cell. Biol. 20, 4745—4753
Wallace-Brodeur, R.R. and Lowe, S.W. (1999). Clinical implications of p53 mutations. Cell Mol. Lif Sci., 55, 64-75
Wang H. Chakrabarty S. (2003). Platelet-activating factor activates mitogen-activated protein kinases, inhibits proliferation, induces differentiation and suppresses the malignant phenotype of human colon carcinoma cells. Oncogene, 22, 2186-2191
Wang, K. K. (2000). Calpain and caspase: can you tell the difference? Trends Nerosci., 23, 20-26
Waterhouse, N. J. (1998). Calpain activation is upstream of caspase in radiation -induced apoptosis. Cell Death Differ., 5, 1051-1061
Wolfe, J. T., Ross, D., Cohen, G. M. (1994). A role for metals and free radicals in the induction of apoptosis in thymocytes. FEBS Lett. 352, 58—62
Woo, S.H., Park, I.C., Park, M.J. Lee, H.C., Lee, S.J., Chun, Y.J., Lee, S.H., Hong, S.I. and Rhee, C.H. (2002). Arsenic trioxide induces apoptosis through a reactive oxygen species-dependent pathway and loss of mitochondrial membrane potential in HeLa cells. Int. J. Oncol., 21, 57-63
Wright, S.C. (1997). Activation of CPP32-like proteases is not sufficient to trigger apoptosis: inhibition of apoptosis by agents that suppress activation of AP24, but not CPP32-like activity. J. Exp. Med., 186, 1107—1117
Xiang, J., Chao, D.T. and Korsmeyer, S.J. (1996). BAX-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. Proc. Natl. Acad. Sci., 93, 14559-14563
Yin, C., Knudsen, C.M., Korsmeyer, S.J. and Van Dyke, T. (1997). Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature, 385, 637-640
Yonish-Rouach, E., Resnitzky, D., Lotem, J. and Sachs, L. (1991). Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature, 352,345-347
Yoshida, M., Saki, T., Hosokawa, N., Marui, N. Matsunoto, K. and Fujioka, A. (1990). The effect of quercetin on cell cycle progression and growth of human gastric cancer cells. FEBS Lett., 260, 10-13
Zhu, X. F., Liu, Z. C., Xie, B. F., Li, Z. M., Feng, G. K., Xie, H. H., Wu, S. J., Yang, R. Z., Wei, X. Y. and Zeng, Y. X. (2002). Involvement of caspase-3 activation in squamocin-induced apoptosis in leukemia cell line HL-60. Life Sci., 70, 1259-1269
Zue W-Y, Johnes, C. S., Kiss, A., Matsukuma, K., Amin, S. and De luca, L. M. (1997). Retinoic acid inhibition of cell cycle progression in MCF-7 human breast cancer cells. Exp. Cell Res., 234, 293-299

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔