(18.204.2.190) 您好!臺灣時間:2021/04/19 08:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭沛鑫
研究生(外文):Pei-Hsin Kuo
論文名稱:不同慢跑鞋鞋底紋路摩擦現象之探討
論文名稱(外文):The frictional Phenomenon of Running Shoes with the Different Outsole Patterns
指導教授:林寶城林寶城引用關係
指導教授(外文):Pao-Chen Lin
學位類別:碩士
校院名稱:臺北巿立體育學院
系所名稱:運動科學研究所
學門:民生學門
學類:運動科技學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:77
中文關鍵詞:人體測試紋路阻斷標準化防滑係數峰值摩擦貢獻能力
外文關鍵詞:subject testpattern-isolated methodstandard peak coefficient of slips resistancefriction capability
相關次數:
  • 被引用被引用:1
  • 點閱點閱:652
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究主要的目的在於探討跑步著地階段中:(一)不同慢跑鞋鞋底紋路與PU表面間所產生的摩擦參數的變化情形。(二)透過紋路阻斷的方式,來評估不同慢跑鞋鞋底紋路對摩擦的貢獻能力。本實驗以人體動態測試分別測試前腳掌鞋底紋路分別為魚脊形、方形顆粒、圓形顆粒、橫條與方格等形狀之五雙慢跑鞋,並透過Kodak高速攝影機(500Hz)與Kislter測力板(1000Hz) ,分別擷取跑步著地各階段慢跑鞋鞋底與運動表面之接觸影像與地面反作用力。經無因次化處理後,本研究主要分析參數為標準化防滑係數峰值、前後方向水平衝量與紋路摩擦貢獻能力。
本研究主要的結論為:(一)跑步著地蹬離期階段的摩擦參數,較能有效的評估鞋底紋路的摩擦現象,其原因在於此階段的外力型態與紋路接觸表面的條件均屬穩定,且人體的自覺反應在此階段較為敏感。(二)防滑係數峰值較高的慢跑鞋鞋底紋路,水平衝量相對較低,這意味著人體因較高的鞋底摩擦力,耗能相對較低。(三)所有摩擦參數的結果均指向溝紋深度較深且接觸面積小的紋路結構,似乎擁有較佳的摩擦力。尤其是方塊與圓形顆粒的紋路結構,因其較佳的外型鎖固,可產生額外的抓力並且減少耗能。基於本研究結論,消費者可選擇類似均勻方形或圓形顆粒狀分佈的鞋底紋路結構,來減少穿戴慢跑鞋時的能量消耗,或者是利用推蹬的動作來評估鞋底摩擦力的大小。

The study was to investigate the variations of frictional parameters between different outsole patterns of running shoes and PU surface in every stage of foot striking and friction capabilities of five running shoes by the pattern-isolated method. Subject Test was used to detect the friction parameters of the five running shoes with herringbone, waffle, pellet, galley, and grid pattern individually. Kodak camera (500Hz) and Kislter force plate (1000Hz) were used to capture the films of shoe-surface contacts and ground reaction forces for every stage in foot striking respectively. The friction parameters of this study included the standard peak coefficient of slip resistance (SCSR), friction capability, and horizontal impulse through the dimensionless processes.
The first result showed that the frictional parameters of toe-off stage could be variable to investigate the frictional phenomenon of outsole patterns because of the stabilities of external forces and stable pattern-surface contact conditions. Second, all results pointed to the same conclusion that the outsole pattern with deeper depth and smaller contact area displayed the better friction, especially in the waffle and pellet pattern structure, higher form locking mechanism induced to the additional traction and reduced energy consumption. Base on the conclusions of this study, consumers can choose the running shoes with outsole patterns which are similar with pellet structures, or can estimate friction of running shoe by foot fastening or taking-off.

目 錄
中文摘要………………………………………………………………….III
英文摘要………………………………………………………………… IV
謝 誌………………………………………………………………………V
目 錄………………………………………………………………… VI
表目錄………………………………………………………………… IX
圖目錄…………………………………………………………………… X
第壹章 緒論………………………...………………………..………… 1
第一節 問題背景 …………………...…………..………….………… 1
第二節 研究目的……………………...……………..………………… 5
第三節 研究範圍與限制………………...…………..………………… 5
第四節 名詞解釋與操作性定義…………...…………………..……… 6
第貳章 理論基礎與文獻探討………………..………..………………8
第一節 理論基礎………………………………..………………..……8
第二節 文獻探討…………………………………..…....……………12
第三節 結語..………………………..…………….………………….19
第參章 研究方法與步驟………………………………………………21
第一節 研究方法…………………………………….….……………21
第二節 研究步驟…………………………………..… ……………29
第肆章 結果與討討.....................................................41
第一節 慢跑鞋各階段摩擦參數之比較.....................41
第二節 慢跑鞋阻斷前後摩擦參數之比較……………………… 55
第三節 摩擦貢獻能力………………………………………… …59
第四節 綜合討論…………………………………………… ……61
第伍章 結論與建議……………………………………………………65
第一節 結論……………………………………………………………65
第二節 建議……………………………………………………………66
參考文獻……….……………………………………………………… 68
壹 中文部分……………………………………….……………………68
貳 英文部分………………………………………………………… …68
附 錄…………………………………………………………………75
附錄一 受試者同意書……………………………….………….……75
附錄二 受試者基本資料表……………………………………………76
附錄三 慢跑鞋鞋底紋路定量參數測量與養本表……………....…77

中文部分:
徐義權。(1996)。鞋底紋路的設計。鞋技通訊,51,84-86。
相子元。(1997)。足部運動生物力學研究計劃報告書。經濟部科技專案研究。
相子元。(1998)。足部運動生物力學研究計劃報告書。經濟部科技專案研究。
黃泰源、謝堯夫、相子元。(2000)。新研發高爾夫球鞋之功能測試分析。中華體育,46。
蔣至傑、王金成。(1999)。跑鞋鞋底磨損程度與跑步速度對踝關節外翻角度之影響。體育學報,27,117-126。
英文部分:
Abeysekera J. & Gao C. (2001). The identification of factors in the systematic evaluation of slip prevention on icy surfaces. International Journal of Industrial Ergonomics, 28, 303-313.
American Society for Testing and Materials. (1989). Standard Test Method for Static Slip Resistance of Footwear Sole, Heel, or Related Materials by Horizontal Pull Slipmeter(HPS), ASTM 609-79.
Amotons, G. (1699). De la resistance caus’ee dans les machines. Mem. I’Acad. Roy, 3, 257-82.
Bates, B. T., Osternig L. R. & Sawhell, J. A. (1983). An assessment of subject variability, subject-shoe interaction, and the evaluation of running shoes using ground reaction force data, Journal of Biomechanics, 16(3), 181-191.
Bowden, F. P. & Tabor, D. (1986). The Friction and Lubrication of Solids. Clarendon: Oxford.
Carr, Gerry. (1997). Mechanics of sport. US: Human Kinetics, 162-164.
Cavanagh, P. R. (1985). Biomechanics IX-B, 123-127.
Cheng, W. R., Kim, I. J., Derek P. Manning & Yuthachai Bunterngchit. (2001). The role of surface roughness in the measurement of slippness. Ergonmics, 44(13), 1200-1216.
Cheng, W. R., Gronqvist, R., Leclercq, R., Myung, R., Makkonen, L., Strandberg, L., Burungraber, R. J., Mattke U. & Steve C. Thorpe. (2001). The role of friction in the measurement of slippness, Part 1: Friction mechanisms and definition of test condidtion. Ergonomics, 44(13), 1217-1232.
Christina K. A. & Cavanagh P. R. (2002). Ground reaction forces and frictional demands during stair decent: effects of age and illumination. Gait and Posture, 15, 153-158.
Coulomb, C. A. (1785). Theorie des machines simples. En ayant egard au frottement de leurs parties. Et la roideur des cordages. Mem Math Phys Paris, 161-342.
Coulomb, C. A. (1781). Theory of simple machines. Memoire de L’ Academie Royale des Sciences, 10, 161.
Challis J. H. (1995). A procedure for determining rigid body transformation parameters. Journal of Biomechanics, 28(6), 733-737.
Chapman, A. E., Leyland, A. J., Ross, S. M. & Rally, M. (1991). Effect of floor conditions frictional characteristics squash court shoes. Journal of Sports Sciences, 9(1), 33-41.
De Koning, JJ., & Nigg, B. (1994). Journal of Biomechanics, 11, 395-406.
Frederick, E. C. & Street, G. M. (1988). Nordic ski racing biomechanical and technical improvements in cross-country skiing. Scientific American, February, 20-22.
Gronqvist, R. (1995). A dynamic method for assessing pedestrian slip resistance. People and Work, Research report2 (Helsinki: Finnish Institute of Occupational Health), 156.
Heidt, R. S., Dormer, S. G., Crawley, P. W., Scranton, P. E., Losses, G. &Howard, M. (1996). Differences in friction and torsional resistance in athletic shoe-turf surface interface. American Journal of Sports Medicine, 24(6), 834-842.
Johnson. (1985). Contact Mechanics. Landon: Oxford.
Johnson, Thomas E.(1996)Running and Court Shoes。Sports and Fitness Equipment Design,15-30。
Katsumasa Tanaka, Sadayuki Ujihashi, Makiko Morita, Katsushi Ishii. (2001). Correlations between the mechanical properties of running shoes and the sensory evaluations by distance runner in relation to the wear of outsole. Proc. Of the 5th symp. On Footwear Biomechanics, Zuerich/Switzerland, 76-77.
Kim, I. J. (2000). Wear progression of shoe heels in dry sliding friction. Ropcessings of the 14th Triennial Congress of the International Ergonomics Association. IEA 2000/HFES 2000. August, San Diego, CA, 498-501.
Kim, I. J., Smith, R. (1999). The relationship between wear, surface topography characteristics and coefficient of friction as a means of assessing the slip hazards. The Second Asia-Pacific Conference on Industrial Engneering and Management System (APIEM’99), October, Ashikaga, Japan, 155-161.
Kim I., J., Smith, R. (2000) Observation of the floor surface topography changes in pedestrian slip resistance measurement. International Journal of Industrial Ergonomics, 6(6), 581-601.
Kunz. H. & Kaufmann, D.A. (1981). Biomechanical analysis of sprinting. Decathletes versus champions. Br. Journal Sports Medicine 15, 117-181.
Leclercq, S., Tisserand, M. & Saulnier, H. (1995). Tribological concepts involed in slipping accident analysis. Ergonomics, 38, 197-208.
Manning, D. P., & Jones, C. (1995). High heels and polishes floor: The ultimate challenge in research on slip resistance. Safety Science, 19, 19-29.
Manning. D.P., Jones, C., Bruce, M. (1983). Improved slip-esistrance on oil from surface roughness of footwear. Rubber Chemistry and Technology 56,703-717.
Manning, D. P., Jones, C., Bruce, M. (1990). Proof of shoe slip-resistance by a walking traction test. Journal of Occupational Accidents, 12, 170-255.
McGuiggan P.M. (1993). An exception to Amontons’ Law: The friction of cabon sufaces in air. Safety Science, 15, 56-64.
McNair, P. R. & Marshall, R. N. (1994). Kinematic and kinetic parameters associated with running in different shoes. British Journal of Sport Medicine, 28(4), 256-264.
Moore, D. F. (1975). The Friction of Pneumatic Tyres. Amsterdam: Elesvier.
Perkins, P. J. (1978). Measurement of slip between the shoe and ground during walking, in C. Anderson & J. Senne. Walkways Surface: Measurement of slip Resistance, ASTM Special Technical Publication 649 (Philadephia: American Society for Testing and Materials), 71-87.
Redfern, M. S., Cham R., Krystyna, G. P., Gronquvist, R., Hirvonen, M., Lanshammar, M., Marpet, M., Yi-Chung, P. C. & Powers, C. (2001). Biomechanics of slips. Ergonomics, 44(13), 1138-1166.
Rheinstein, D. J., Morehouse, C. A. &Niebel, B. W. (1978). Effects on traction of outsole composition and hardness of basketball shoes and three types of playing surfaces. Medicine and Science in Sports, 10(4), 282-288.
Startzell J. K. & Cavanagh P. R. (1999). A three-dimensional approach to the calculation of foot clearance during locomotion. Human Movement Science, 18, 603-611.
Valiant, G. A. (1987). The effect of outsole pattern on basketball shoe traction. Biomechanics in Sports III&IV, 29-37。
Valiant, G. A. (1985). Static friction characteristics of cleated outsole samples on astroturf. Medicine and Science Sports Exercise, 17(2), 295-296.
Waller, J. A. (1978). Falls among the elderly-human and environment factors. Accident Analysis and Prevention, 10, 21-33.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔