(3.235.41.241) 您好!臺灣時間:2021/04/21 12:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃盛境
論文名稱:含1,4-或1,5-萘二氧及三氟甲基之芳香族聚醯亞胺及聚醯胺之合成與特性研究
論文名稱(外文):PREPARATION AND PROPERTIES OF TRIFLUOROMETHYL SUBSTITUTED AROMATIC POLYIMIDES AND POLYAMIDES CONTAINING 1,4- OR 1,5-NAPHTHALENEDIOXY UNITS
指導教授:蕭勝輝
指導教授(外文):Sheng-Huei Hsiao
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:93
中文關鍵詞:聚醯亞胺聚醯胺
外文關鍵詞:naphthalenepolyimidepolyamidefluorine-containing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
兩種新型含三氟甲基的二醚胺單體1,4-bis(4-amino-2-trifluoro- methylphenoxy)naphthalene及1,5-bis(4-amino-2-trifluoromethyl- phenoxy)naphthalene係由2-chloro-5-nitrobenzotrifluoride 分別與1,4-dihydroxynaphthalene及1,5-dihydroxynaphthalene經由兩個主要反應步驟而製得。首先,將這兩種含三氟甲基的二胺單體分別與一些芳香族二酐先反應成聚醯胺酸,再經熱閉環或化學閉環製得兩系新型含三氟甲基的芳香族聚醯亞胺,其固有粘度值分別在0.57~0.91及0.42~1.02 dL/g之間。大部分的聚醯亞胺可溶於極性較強的有機溶劑當中如N-methyl-2-pyrrolidone (NMP) 及 N,N-dimethylacetamide (DMAc),且均可製成具撓曲性的薄膜。這些聚醯亞胺的玻璃轉移溫度(Tg)及軟化溫度(Ts)分別在252~315及250~301 oC的範圍內,它們在空氣及氮氣中的5%重量損失溫度均在500 oC以上。這些聚醯亞胺薄膜在1 MHz頻率所測得的介電常數值在3.03至3.71之間。此外,上述的含氟二胺單體亦用來與各種芳香族二胺經由磷酸化直接聚縮合反應法生成兩系列新型含氟的芳香族聚醯胺,其固有粘度值分別在0.32~0.62及0.39~1.12 dL/g之範圍內。這些聚醯胺均可溶於如NMP及DMAc的極性有機溶劑中,並可由溶液塗佈法製成強韌的薄膜。它們的Tg值在192~256 oC之間,在空氣及氮氣中的5%重量損失溫度值分別在351~437及361~446 oC之間。
Two novel trifluoromethyl-substituted bis(ether amine) monomers, 1,4-bis(4-amino-2-trifluoromethylphenoxy)naphthalene and 1,5-bis(4- amino-2-trifluoromethylphenoxy)naphthalene, were synthesized through the nucleophilic displacement of 2-chloro-5-nitrobenzotrifluoride with 1,4-dihydroxynaphthalene and 1,5-dihydroxynaphthalene, respectively, in the presence of potassium carbonate in dimethyl sulfoxide, followed by catalytic reduction with hydrazine and Pd/C in ethanol. First, two series of new fluorine-containing polyimides with inherent viscosities of 0.57~0.91 and 0.42~1.02 dL/g were prepared by reacting the diamines with commercially available aromatic dianhydrides via a conventional two-step thermal and chemical imidization methods. Most of the resulting polyimides were soluble in strong polar solvents such as N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc). All the polyimides afforded transparent, flexible, and strong films with good tensile properties. These polyimides exhibited glass-transition temperatures (Tg) (by DSC) and softening temperatures (Ts) (by TMA) in the ranges of 252~315 oC and 250~301℃, respectively. Decomposition temperatures for 5% weight loss all occurred above 500℃ in both air and nitrogen atmospheres. The dielectric constants of these polymers ranged from 3.03 to 3.71 at 1 MHz. In addition, two series of new fluorinated polyamides with inherent viscosities of 0.32~0.62 and 0.39~1.12 dL/g were also prepared by the direct polycondensation reaction of the diamines with various aromatic dicarboxylic acids by means of triphenyl phosphite and pyridine. All the polyamides were soluble in polar solvents such as NMP and DMAc and could be solution-cast into tough and flexible films. These polyamides had Tgs between 192 and 256 oC and 5% weight loss temperatures at 361~446 oC in N2 and 351~437 oC in air.
CONTENTS
ACKNOWLEDGEMENTS……………………………………………………… iv
ABSTRACT (in English)…………………………………………………v
ABSTRACT (in Chinese)…………………………………………………vii
CONTENTS………………………………………………………………… ix
LIST OF TABLES………………………………………………………… xi
LIST OF FIGURES…………………………………………………………xiii
CHAPTER 1 INTRODUCTION.………………………………………………1
CHAPTER 2 EXPERIMENTAL.………………………………………………4
2.1. Materials.……………………………………………………… 4
2.2. Monomer Synthesis………………………………………………5
2.2.1. 1,4-Bis(4-nitro-2-trifluoromethylphenoxy)-
naphthalene (2)…………………………………………… 5
2.2.2. 1,4-Bis(4-amino-2-trifluoromethylphenoxy)-
naphthalene (3)…………………………………………… 7
2.2.3. 1,5-Bis(4-nitro-2-trifluoromethylphenoxy)-
naphthalene (9)…………………………………………… 9
2.2.4. 1,5-Bis(4-nitro-2-trifluoromethylphenoxy)-
naphthalene (10)……………………………………………10
2.3. Polymer Synthesis………………………………………………11
2.3.1. Synthesis of Polyimides 6a-f…………………………… 11
2.3.2. Synthesis of Polyamides 8a-h…………………………… 12
2.3.3. Synthesis of Polyimides 13a-h……………………………14
2.3.4. Synthesis of Polyamides 15a-h……………………………15
2.3.5. Preparation of the Polyamide Films…………………… 16
2.4. Measurements…………………………………………………… 16
CHAPTER 3 RESULTS AND DISSCUSSION…………………………………19
3.1. Synthesis and Properties of New Aromatic PolyimidesBased
on 1,4-bis(4-amino-2-trifluoromethylphenoxy)-
naphthalene………………………………………………………19
3.1.1. Monomer Synthesis……………………………………………19
3.1.2. Polymer Synthesis ………………………………………… 23
3.1.3. Properties of Polyimides………………………………… 32
3.1.4. Properties of Polyamides………………………………… 46
3.2. Synthesis and Properties of New Aromatic PolyimidesBased
on 1,5-Bis(4-amino-2-trifluoromethylphenoxy)-
naphthalene………………………………………………………54
3.2.1. Monomer Synthesis……………………………………………54
3.2.2. Polymer Synthesis ………………………………………… 60
3.2.3. Properties of Polyimides………………………………… 67
3.2.4. Properties of Polyamides………………………………… 77
CHAPTER 4 CONCLUSIONS…………………………………………………89
REFERENCES……………………………………………………………… 90
LIST OF TABLES
Table Page
Table 3.1. Inherent Viscosity of Poly(amic acid)s and
Polyimides and Elemental Analyses of the
Polyimides…………………………………………………27
Table 3.2. Synthesis Conditions, Inherent Viscosities, and
Average Molecular Weights of
Polyamides…………………………………………………31
Table 3.3. Solubility Behavior of the Polyimides Prepared via
Thermal/or Chemical Imidization…………………… 36
Table 3.4. Tensile Properties of the Polyimide Films……… 40
Table 3.5. Thermal Properties of the Polyimides………………41
Table 3.6. Moisture Absorption and Dielectric Constants of the
Polyimides…………………………………………………45
Table 3.7. Solubility Behavior of Polyamides.…………………47
Table 3.8. Tensile Properties of Polyamide films…………… 48
Table 3.9. Thermal Properties of the Polyamides………………51
Table 3.10. Inherent Viscosity of Poly(amic acid)s and
Polyimides and Elemental Analyses of the
Polyimides……………………………………………… 64
Table 3.11. Synthesis Conditions, Inherent Viscosities, and
Average Molecular Weights of
Polyamides……………………………………………… 66
Table 3.12. Solubility Behavior of the Polyimides Prepared via Thermal/or Chemical Imidization……………………………………70
Table 3.13. Tensile Properties of the Polyimide Films………73
Table 3.14. Thermal Properties of the Polyimides…………… 74
Table 3.15. Moisture Absorption and Dielectric Constants of
the Polyimides.…………………………………………79
Table 3.16. Solubility Behavior of Polyamides…………………81
Table 3.17. Tensile Properties of Polyamide Films……………84
Table 3.18. Thermal Properties of the Polyamides…………… 85
LIST OF FIGURES
Figure Page
Figure 3.1. FTIR spectra of dinitro compound 2 and diamine 3.
…………………………………………………………… 21
Figure 3.2. 1H NMR spectra of (a) dinitro compound 2 and (b)
diamine 3in DMSO-d6……………………………………22
Figure 3.3. 13C NMR spectra of (a) dinitro compound 2 and (b)
diamine 3 in DMSO-d6………………………………… 24
Figure 3.4. The X-ray structure of dimaine 3………………… 25
Figure 3.5. IR spectra of poly(amic acid) 5a and polyimide
6a………………………………………………………… 29
Figure 3.6. The IR spectrum of polyamide 8a……………………33
Figure 3.7. 1H NMR spectrum of polyamide 8a in DMSO-d6…… 34
Figure 3.8. 13C NMR spectrum of polyamide 8a in DMSO-d6……35
Figure 3.9. Wide-angle X-ray diffractograms of polyimides…38
Figure 3.10. The TMA curve of polyimide 6f at a heating rate
of 10 ℃/min……………………………………………42
Figure 3.11. The TGA curves of polyimide 6f at a heating rate
of 20 ℃/min……………………………………………44
Figure 3.12. Wide-angle X-ray diffractograms of
polyamides………………………………………………49
Figure 3.13. The TMA curve of polyamide 8g at a heating rate
of 10 oC/min.………………………………………… 52
Figure 3.14. TGA curves of polyamide 8a at a heating rate of
20 ℃/min……………………………………………… 53
Figure 3.15. FTIR spectra of dinitro compound 9 and diamine 10.
……………………………………………………………56
Figure 3.16. 1H NMR spectra of (a) dinitro compound 9 and (b)
diamine 10 in DMSO-d6……………………………… 58
Figure 3.17. 13C NMR spectra of (a) dinitro compound 9 and (b)
diamine 10 in DMSO-d6……………………………… 59
Figure 3.18. IR spectra of poly(amic acid) 12a and polyimide
13a……………………………………………………… 62
Figure 3.19. The IR spectrum of polyamide 15d…………………68
Figure 3.20. 1H NMR spectrum of polyamide 15d in DMSO-d6… 69
Figure 3.21. Wide-angle X-ray diffractograms of
polyimides………………………………………………72
Figure 3.22. The TMA curve of polyimide 13a at a heating rate
of 10oC /min……………………………………………76
Figure 3.23.TGA curves of polyimide 13a at a heating rate of
20 oC/min…………………………………………………78
Figure 3.24. Wide-angle X-ray diffractograms of
polyamides………………………………………………82
Figure 3.25. The TMA curve of polyamide 15b at a heating rate
of 10 ℃/min……………………………………………86
Figure 3.26. TGA curves of polyamide 15e at a heating rate of
20 oC/min……………………………………………… 87
1. Aromatic High-Strength Fibers; Yang, H. H., Ed.; Wiley: New
York, 1989.
2. Polyimides; Wilson, D.; Stenzenberger, H. D.; Hergenrother,
P. M. Eds.; Blackie: Glasgow and London, 1990.
3. Polyimides: Fundamentals and Applications; Ghosh, M. M.;
Mittal, K. L., Eds.; Marcel Dekker: New York, 1996.
4. Imai, Y. High Perform. Polym., 1995, 7, 337.
5. Imai, Y. React. Funct. Polym., 1996, 30, 3.
6. Liou, G.-S. J. Polym. Sci., Part A: Polym. Chem., 1998, 36,
1937.
7. Liou, G.-S.; Maruyama, M.; Kakimoto, M.; Imai, Y. J. Polym.
Sci. Part A: Polym. Chem., 1998, 36, 2021.
8. Liou, G.-S.; Hsiao, S.-H.; Ishida, M.; Kakimoto, M., Imai,
Y. J. Polym. Sci. Part A: Polym. Chem., 2002, 40, 2810.
9. Liou, G.-S.; Hsiao, S.-H. J. Polym. Sci. Part A: Polym.
Chem., 2003, 41, 94.
10. Li, F.; Fang, S.; Ge, J. J.; Honigfort, P. S.; Chen, J.-
C.; Harris, F. W.; Cheng, S. Z. D. Polymer, 1999, 40, 4571.
11. Li, F.; Fang, S.; Ge, J. J.; Honigfort, P. S.; Chen, J.-
C.; Harris, F. W.; Cheng, S. Z. D. Polymer, 1999, 40, 4987.
12. Eastmond, G. C.; Paprotny, J. React. Funct. Polym., 1996,
30, 27.
13. Chern, Y.-T.; Lin, K.-S.; Kao, S.-C. J. Appl. Polym. Sci.,
1998, 68, 315.
14. Takekoshi, T.; Kochanowski, J. E.; Manello, J. S.; Webber
M. J. J. Polym. Sci., Polym. Symp. 1986, 74, 93.
15. Maglio, G.; Palumbo, R.; Vignola, M. C. Macromol. Chem.
Phys., 1995, 196, 775.
16. Tamai, S.; Yamaguchi, A.; Ohta, M. Polymer, 1996, 37, 3683.
17. Hsiao, S.-H.; Chang, C.-F. Macromol. Chem. Phys., 1996,
197, 1255.
18. Hsiao, S.-H.; Yu, C.-H. J. Polym. Res., 1996, 3, 247.
19. Ayala, D.; Lozano, A. E.; de Abajo, J.; de la Campa, J. G.
J. Polym. Sci., Part A: Polym. Chem., 1999, 37, 804.
20. Espeso, J. F.; de la Campa, J. G.; Lozano, A. E.; de
Abajo, J. J. Polym. Sci., Part A: Polym. Chem., 2000, 38,
1014.
21. Liaw, D.-J.; Liaw, B.-Y.; Yang, C.-M. Acta Polym., 1999,
50, 332.
22. Yagci, H.; Mathias, L. J. Polymer, 1998, 39, 3779.
23. Hsiao, S.-H.; Li, C.-T. Macromolecules, 1998, 31, 7213.
24. Eastmond, G. C.; Gibas, M.; Paprotny, J. Eur. Polym. J.,
1999, 35, 2097.
25. Espeso, J. F.; Ferrero, E.; de la Campa, J. G.; Lozano, A.
E; de Abajo J. J. Polym. Sci., Part A: Polym. Chem., 2001,
39, 475.
26. Reddy, D. S.; Hsu, C.-F.; Wu, F.-I. J. Polym. Sci., Part
A: Polym. Chem., 2002, 40, 262.
27. Wu, S.-C.; Hsu, C.-F. J. Polym. Sci., Part A: Polym.
Chem., 2003, 41, 1160.
28. Liou, G.-S.; Hsiao, S.-H. J. Polym. Sci., Part A: Polym.
Chem., 1997, 35, 2273.
29. Yang, C.-P.; Chen, J.-A. Polym. J., 1998, 30, 571.
30. Yang, C.-P.; Chen, J.-A. Polym. J., 1999, 31, 955.
31. Yang, C. P.; Chen, W. T. J. Polym. Sci., Part A: Polym.
Chem., 1993, 31, 2799.
32. Yang, C. P.; Chen, W. T. J. Polym. Sci., Part A: Polym.
Chem., 1993, 31, 1571.
33. Takashi, K.; Atsushi, S.; Shoji, T. (Mitsui Chemistry
Industry Co., Japan); Jpn Kokai Tokyo Koho JP 2000 297,067
(Chem. Abstr. 2000, 133, 322563h); JP 2000 297,153 (Chem.
Abstr. 2000, 133, 322280p): JP 2000 297,154 (Chem. Abstr.
2000, 133, 310300g).
34. Xie, K.; Liu, J. G.; Zhou, H. W.; Zhang, S. Y.; He, M. H.;
Yang, S. Y. Polymer 2001, 42, 7267.
35. Xie, K.; Zhang, S. Y.; Liu, J. G.; He, M. H.; Yang, S. Y.
J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 2581.
36. Yang, C.-P.; Hsiao, S.-H.; Hsu, M.-F. J. Polym. Sci., Part
A: Polym. Chem. 2002, 40, 524.
37. Hsiao, S.-H.; Yang, C.-P.; Chung, C.-L. J. Polym. Sci.,
Part A: Polym. Chem., 2003, 41, 2001.
38. Hsiao, S.-H; Yang, C.-P; Chu, K.-Y. Macromol. Chem. Phys.,
1997, 198, 2153.
39. Hsiao, S.-H; Yang, C.-P; Chu, K.-Y. Macromol. Chem. Phys.,
1997, 198, 819.
40. Yamazaki, N.; Matsumoto, M.; Higashi, F. J. Polym. Sci.,
Polym. Chem. Ed., 1975, 13, 1373.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 聚醯胺與聚醯亞胺膜於滲透蒸發與蒸氣揮發之研究
2. 利用連續自我反覆反應(SSRR)合成聚醯胺-醯亞胺以及聚醯亞胺並應用於“窄分子量分布聚醯胺”之發展
3. 由不對稱的醚二胺衍生的聚醯亞胺與聚醯胺
4. 新型聚醯亞胺及聚醯胺之合成與物性研究
5. 利用電化學及理論計算探討新型含三苯胺之電致變色聚醯亞胺與聚醯胺之氧化機構
6. 合成新型含三苯胺及雜環結構之聚醯胺與聚醯亞胺及其性質研究
7. 具三甲氧基活化之三苯胺結構的新型聚醯胺及聚醯亞胺的合成與光致發光及電致變色性質研究
8. 主鏈具三苯胺結構及側鏈含脂肪胺基團之聚醯胺與聚醯亞胺的合成與性質探討
9. 具有二(4-第三丁基苯)胺基取代的三苯胺結構之電致變色聚醯胺與聚醯亞胺的研究
10. 合成anthraquinone側基之新聚醯亞胺與聚醯胺及其性質研究
11. 主鏈含三苯胺結構及側鏈帶有3,6-雙(第三丁基)咔唑基團之新型芳香族聚醯胺及聚醯亞胺的合成與光電性質
12. 合成新型含三苯胺及金剛烷之聚醯亞胺與聚醯胺及其性質研究
13. 具有三氟甲基或甲基取代之三苯胺成分的新型芳香族聚醯胺及聚醯亞胺之合成與光電性質研究
14. 具有芳香氧取代基之三苯胺結構之芳香族聚醯胺及聚醯亞胺之合成與光電性質研究
15. 具有對位單氟取代三苯胺基團之新型芳香族聚合物的合成與光致發光及電致變色性質之研究
 
1. 含側接對位三聯苯結構及三氟甲基之可溶性聚醯亞胺及聚醯胺之合成與特性研究
2. 新型含氟之芳香族聚醯亞胺及聚醯胺之合成與性質
3. 由2’,5’-雙(3,4-二羧苯氧基)對三聯苯二酐衍生之可溶性聚醯亞胺之合成與特性研究
4. 具有三氟甲基或甲基取代之三苯胺成分的新型芳香族聚醯胺及聚醯亞胺之合成與光電性質研究
5. 新型含三氟甲基取代之萘環結構的芳香族二醚二胺所衍生之有機可溶性及低介電常數之聚醯亞胺之合成與性質
6. 由含三氟甲基之芳香族二醚二胺衍生之無色含氟聚醯亞胺、可溶性聚萘醯亞胺、及聚醯亞胺/二氧化矽混成材料之合成及其性質之研究
7. 具有對位單氟取代三苯胺基團之新型芳香族聚合物的合成與光致發光及電致變色性質之研究
8. 具有3,5-二甲基或雙三氟甲基取代之三苯胺結構的新型芳香族聚醯胺及聚醯亞胺之合成與光電性質之研究
9. 具有三氟甲基或甲基取代之三苯胺成分的新型芳香族聚醯胺及聚醯亞胺之合成與光電性質研究具有三氟甲基或甲基取代之三苯胺成分的新型芳香族聚醯胺及聚醯亞胺之合成與光電性質研究
10. 側鏈含金剛烷基取代之苯氧基及主鏈具三苯胺結構的新型聚醯亞胺之合成及其性質之研究
11. 具有芳香氧取代基之三苯胺結構之芳香族聚醯胺及聚醯亞胺之合成與光電性質研究
12. 新型具第三丁基三苯胺基團之芳香族聚醯胺及聚醯亞胺之合成與光致發光及電致變色性質之研究
13. 由4,4’-二羥基二苯甲酮及3-硝基苯酚經由二胺合成含氟聚醯亞胺及其性質
14. 主鏈含三苯胺結構之芳香族聚噁二唑及聚亞甲胺之合成與特性研究
15. 主鏈含三氟亞乙基及醚鏈之高性能高分子之合成與性質
 
系統版面圖檔 系統版面圖檔