(3.227.235.183) 您好!臺灣時間:2021/04/13 22:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳建志
研究生(外文):Jian-Jr Chen
論文名稱:PEO/LiClO4固態高分子電解質混摻奈米粒子(TiO2,SiO2,CdS,SiC)和TEOS之離子導電度研究
論文名稱(外文):STUDIES ON THE IONIC CONDUCTIVITY OF PEO/LiClO4 SOLID POLYMER ELECTROLYTE BLENDED WITH NANOPARTICLES (TiO2, SiO2, CdS, SiC) AND TEOS
指導教授:郭欽湊
指導教授(外文):Chin-Tsou Kuo
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:57
中文關鍵詞:高分子電解質聚氧化乙烯離子島電度
外文關鍵詞:Polymer composite electrolytePEOIonic conductivity
相關次數:
  • 被引用被引用:2
  • 點閱點閱:311
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
目前奈米材料證實對於固態高分子電解質上有相當助益,已成為重要的研究方向。本實驗的固態高分子電解質是以聚氧化乙烯( Poly(ethylene oxide)(PEO)高分子為主體,與鋰金屬鹽 (LiClO4)依不同比例混摻。由X—ray 和DSC可知,PEO的結晶度隨著LiClO4含量的增加而降低。利用AC阻抗量測,PEO/LiClO4固態高分子電解質的離子導電度隨著所添加的鋰鹽增加而上升,當[EO]/[Li +] = 10時達到最高,其離子導電度為7.13 × 10 — 6 S/cm,當再添加更多鋰鹽時,其離子導電度反而下降。另外進行添加不同的奈米材料(TiO2,SiO2,CdS,SiC),及C8H20O4Si (Tetraethoxysilane,簡稱TEOS) 於P(EO)8LiClO4或P(EO)10LiClO4中,由實驗得知除SiC外,其他奈米材料均能增加離子導電度。且 P(EO)8LiClO4和3 wt% TEOS 混摻可得最高的離子導電度為7.83 × 10 — 4 S/cm,接近液態電解液鋰二次電池之10 — 2 ~ 10 — 3 S/cm的水準。P(EO)8LiClO4和3 wt% 之SiO2,TiO2, 和CdS混摻,可得離子導電度分別為2.9 × 10 — 4,3.9 × 10 — 4,和 4.83 × 10 — 4 S/cm。換句話說,固態高分子電解質摻雜3 wt% 的奈米粒子所增加的離子導電度大小為TEOS > CdS > TiO2 > SiO2 > SiC,這個結果亦可由SEM圖加以證實。由機械性質可證實添加奈米粒子,如TiO2,SiO2和CdS可以增加固態高分子電解質的機械穩定度。

It has been found that the nano-sized materials are very helpful in the solid polymer electrolyte and therefore it has become an important research field. In this study, the solid polymer electrolyte have been prepared based on poly(ethylene oxide) (PEO) blended with different weight percentages of alkali metal salt (LiClO4). The X—ray diffraction and DSC studies reveal the crystallization of PEO, which is reduced with increasing the content of LiClO4. From the AC impedance measurements, the ionic conductivity of the PEO/LiClO4 SPE systems increases initially with decreasing [EO]/[Li+] ratio and reaches maximum value (7.13 × 10 — 6 S/cm) at the [EO]/[Li+] ratio of 10, but decreases as the [EO]/[Li+] ratio is further decreased. It can be found that SPE system blended with nanoparticles ((TiO2, SiO2, and CdS), and tetraethoxysilane (TEOS)) can enhance the ionic conductivity, except for SiC. The highest ionic conductivity of P(EO)8LiClO4 blended with 3 wt% of TEOS can reach 7.83 × 10 — 4 S/cm at room temperature, which is close to those of lithium liquid electrolyte lithium batteries (10 — 2 ~ 10 — 3 S/cm) used extensively at present. The ionic conductivities of P(EO)8LiClO4 SPE system blended with 3 wt% of SiO2, TiO2, and CdS is 2.9 × 10 — 4, 3.9 × 10 — 4, and 4.83 × 10 — 4 S/cm, respectively. In other words , the order of ionic conductivity for SPE blended with 3 wt% of nanoparticles is TEOS > CdS > TiO2 > SiO2 > SiC. The result can be confirmed by SEM micrographs. It can be found that SPE system blended with nanoparticles (TiO2, SiO2, and CdS) can improve the tensile strength stability of SPE film.

ACKNOWLEDGEMENTS………………………………………………i
ABSTRACT (English)……………………………………………ii
ABSTRACT (Chinese)……………………………………………iv
CONTENTS…………………………………………………………vi
LIST OF TABLES…………………………………………………viii
LIST OF FIGURES………………………………… ……………ix
CHAPTER 1 INTRODUCTION………………………………………1
1.1 Preface………………………………………… …………1
1.2 Research objective………………………………………5
CHAPTER 2 LITERATURE REVIEW……… ………………………7
2.1 The History of Development of Dry SPE…… ………8
2.1.1 Suppression of crystallization of polymer
chains to improve polymer chain mobility …8
2.1.2 Increase in the carrier concentration………11
2.2 The History of Development of Gelled SPE…………12
2.3 The History of Development of Porous SPE…………13
CHAPTER 3 EXPERIMENTAL………………………………………14
3.1 Materials…………………………… ……………………14
3.2 Sample preparation………………………………………15
3.3 Device fabrication of button cell assembly………16
3.4 Characterization…………………………………………18
CHAPTER 4 RESULTS AND DISCUSSION…………………………20
4.1 PEO/LiClO4 SPE system……………………… …………20
4.2 PEO/LiClO4 blended with nanoparticles SPE
system………………………………………………………30
4.3 PEO/LiClO4 blended with TEOS SPE system …………40
CHAPTER 5 CONCLUSIONS ………………………………………51
REFERENCES………………………………………………………53
LIST OF TABLES
Table 4.1 Melting temperature (Tm), heat of fusion (ΔHf),
and crystalline percentage (χ) of PEO/LiClO4 SPE
system…………………………………………………………24
Table 4.2 Ionic conductivity of PEO/LiClO4 SPE system ………27
Table 4.3 Ionic conductivity of different weight percentage
of 10 nm nanoparticles (SiO2, TiO2, and CdS) in
P(EO)8LiClO4…………………………………………………34
Table 4.4 Ionic conductivity of different weight percentage
of SiC (10 nm) in P(EO)10LiClO4 ………………………38
Table 4.5 Ionic conductivity of different weight percentage
of TEOS in P(EO)8LiClO4 and P(EO)10LiClO4 …………41
Table 4.6 Activation energy (Ea) of P(EO)10LiClO4, P(EO)
8LiClO4, 3 wt% nanoparticles (SiO2, TiO2 and TEOS)
in P(EO)8LiClO4 ……………………………………………45
Table 4.7 Tensile properties of P(EO)10LiClO4, P(EO)8LiClO4,
3 wt% of nanoparticles (SiC, SiO2, TiO2, CdS, and
TEOS) in P(EO)8LiClO4 ……………………………………50
LIST OF FIGURES
Fig. 3.1 Schematic expansion of button cell assembly…………17
Fig. 4.1 X-ray diffraction patterns of (a) pure LiClO4, (b)
pure PEO, (c) P(EO)16LiClO4, (d) P(EO)14LiClO4, (e)
P(EO)10LiClO4, and (f) P(EO)8LiClO4……………………21
Fig. 4.2 DSC traces of (a) pure PEO, (b) P(EO)16LiClO4, (c)
P(EO)14LiClO4, (d) P(EO)12LiClO4, (e) P(EO)10LiClO4,
and (f) P(EO)8LiClO4 ………………………………………22
Fig. 4.3 Complex impedance plots (1 Hz — 1 MHz) of (a)
P(EO)16LiClO4, (b) P(EO)14LiClO4, (c) P(EO)12LiClO4,
(d) P(EO)10LiClO4, (e) P(EO)8LiClO4, and (f) P(EO)
6LiClO4 at room temperature………………………………26
Fig. 4.4 Ionic conductivity depends on [EO]/[Li +] ratio of
PEO/LiClO4 SPE systems at room temperature …………29
Fig. 4.5 DSC traces of (a) pure PEO; (b) LiClO4 powder; (c)
SiO2 powder; and (d) P(EO)8LiClO4 blend with 2.95
wt% of SiO2……………………………………………………31
Fig. 4.6 Complex impedance plots (1 Hz — 1 MHz) of (a) 0,
(b) 1, (c) 3, (d) 5, and (e) 7 wt% of (i) SiO2, (ii)
TiO2, and (iii) CdS in P(EO)8LiClO4, respectively…32
Fig. 4.7 Ionic conductivity depends on concentration (wt%)
of nanoparticles: (a) SiO2, (b) TiO2, and (c) CdS
in P(EO)8LiClO4 SPE systems at room temperature……36
Fig. 4.8 Complex impedance plots (1 Hz — 1 MHz) of (a) 1.04
wt%, (b) 2.98 wt%, (c) 5.02 wt%, (d) 7.03 wt%, and
(e) 9.9 wt% of SiC (10 nm) in P(EO)10LiClO4…………37
Fig. 4.9 Ionic conductivity depends on SiC concentration
(wt%) in P(EO)10LiClO4 SPE systems at room
temperature……………………………………………………38
Fig. 4.10 Ionic conductivity depends on concentration (wt%)
of TEOS in (a) P(EO)10 LiClO4, and (b)P(EO)8LiClO4
SPE systems at room temperature ………………………42
Fig. 4.11 Arrhenius plots of the ionic conductivity of (a) P
(EO)16LiClO4,(b) P(EO)8LiClO4, (c) P(EO)8LiClO4 + 3
wt% SiO2, (d) P(EO)8LiClO4 + 3 wt% TiO2, (e) P(EO)
8LiClO4 + 3 wt% TEOS ………………………………………44
Fig. 4.12 SEM micrographs (5000×) of (a) pure PEO, (b)
P(EO)16LiClO4, (c) P(EO)10LiClO4, and (d) P(EO)
8LiClO4 at room temperature………………………………47
Fig. 4.13 SEM micrographs (5000×) for 3 wt% of (a) SiC, (b)
SiO2, (c) TiO2, (d) CdS, and (e) TEOS in P(EO)
8LiClO4 SPE systems at room temperature………………49

1. B. Kumar, L.G. Scanlon, R.J. Spry, J. Power Sources 96
(2001) 337.
2. P. Lightfood, M.A. Metha, P.G. Bruce, Science 262 (1993)
883.
3. B. Kumer, L.G. Scanlon, J. Power Sources 52 (1994) 261.
4. F. Croce, G.B. Appetecchi, L. Persi, B. Scrosati, Nature
394 (1998) 456.
5. J. McBreen, H.S. Lee, X.Q. Yang, J. Power Sources 89 (2000)
163.
6. E. Quartarone, P. Mustarelli, A. Magistris, Solid State
Ionics 110 (1998) 1.
7. W. Wieczorek, K. Such, H. Wycislik, J. Plocharski, Solid
State Ionics 36 (1989) 255.
8. F. Capuano, F. Croce, B. Scrosati, J. Electrochem. Soc. 138
(1991) 1918.
9. W. Wieczorek, M. Siekierski, J. Appl. Phys. 76 (1994) 2220.
10. P.V. Wright, Br. Polym. J. 7 (1975) 319.
11. M.B. Armand, J.M. Chabagno, and M. Duclot, Second
International Meeting on Solid Electrolytes, St. Andrews,
Scotland, September 20-22, 1978, Extended Abstracts.
12. E.A. Retman, M.L. Kaplan, R.J. Cava, Solid State Ionics 17
(1985) 67.
13. P.R. Sorenson, T. Jacobson, Electrochim. Acta 27 (1982)
1675.
14. D. Fauteux, C. Robitaille, J. Electrochem. Soc. 133 (1986)
307.
15. C. Berthier, W. Gorecki, M. Minier, J.M. Chabagno, P.
Riguad, Solid State Ionics 11 (1983) 91.
16. A. Kills, J.F. LeNest, A. Gandini, H. Cheradame, J.P.
Cohen, Solid State Ionics 14 (1984) 231.
17. P.G. Hall, G.R. Davies, J.E. McIntyre, I.M. Ward, D.J.
Bannister, K.M.F. Le Brocq , Polym. Commun. 27 (1986) 98.
18. A. Bouridah, F. Dalard, D. Deroo, H. Cheradame, J.F.
LeNest, Solid State Ionics 15 (1985) 233.
19. D. Benrabah, J.Y. Sanchez, M. Armand, Electrochim. Acta 37
(1992) 1737.
20. X. Peng, H. Ba, D. Chen, F. Wang, Electrochim. Acta 37
(1992) 1569.
21. W. Wieczorek, J.R. Stevens, J. Phys. Chem. B 101 (1997)
1529.
22. C.C. Liang, J. Electrochem. Soc. 120 (1973) 1289.
23. J.E. Weston, B.C.H. Steele, Solid State Ionics 7 (1982) 75.
24. S. Skaruup, K. West, P.M. Julian, D.M. Thomas, Solid State
Ionics 40—41 (1990) 1021.
25. K.M. Nairn, M. Forsyth, M. Greville, D.R. MacFarlane,
Solid State Ionics 86—88 (1996) 1397.
26. W. Krawiec, L.G. Scanlon, J.P. Fellner, R.A. Vaia, S.
Vasudevan, E.P. Giannelis, J. Power Sources 54 (1995) 310.
27. B. Kumar, L.G. Scanlon, Solid State Ionics 124 (1999) 239.
28. H.J. Walls, J. Zhou, J.A. Yerian, P.S. Fedkiw, S.A. Khan,
M.K. Stowe, G.L. Baker, J. Power Sources 89 (2000) 156.
29. F. Croce, R. Curini, A. Martinelli, L. Persi, F. Ronci, B.
Scrosati, R. Caminiti, J. Phys. Chem. B 103 (1999) 10632.
30. G.B. Appetecchi, F. Croce, L. Persi, F. Ronci, B.
Scrosati, Electrochim. Acta 45 (2000) 1481.
31. B. Scrosati, F. Croce, L. Persi, J. Electrchem. Soc. 5
(2000) 1718.
32. K.M. Abraham, Z. Jiang, B. Caroll, Chem. Mater. 9 (1997)
1978.
33. F. Croce, G.B. Appetechi, L. Persi, B. Scrosati, Nature
373 (1995) 557.
34. H.Y. Sun, H.J. Sohn, O. Yamamoto, Y. Takeda, N. Imanishi,
J. Electrochem. Soc. 146 (1999) 1672.
35. B. Scrosati, J. Electrochem. Soc. 136 (1989) 2774.
36. W. Wieczorek, Z. Florjancyk, J.R. Stevens, Electrochim.
Acta 40 (1995) 2251.
37. A. Vallee, S. Besner, J. Prud’homme, Electrochim. Acta 37
(1992) 1579.
38. D. Benrabah, S. sylla, F. Alloin, J.Y. Sanchez, M. Armand,
Electrochim. Acta 40 (1995) 2259.
39. T. Fujinami, A. Tokimune, M.A. Mehta, G.C. Rawsky, D.F.
Shriver, Chem. Mater. 9 (1997) 2236.
40. C.A. Angell, C. Liu, E. Saanchez, Nature 362 (1993) 137.
41. G. Feuillade, P. Perche, J. Appl. Electrochem. 5 (1975)
63.
42. E. Tsuchida, H. Ohno, K. Tsunemi, Electrochim. Acta 28
(1983) 591.
43. A.S. Gozdz, J.M. Tarascon, C.N. Schmutz, P.C. Warren, O.S.
Gebizlioglu, F. Shokoohi, Proceedings of the 10th Annual
Battery Conference on Applications and Advances, 1995, p.
301.
44. C. Kim, G. Lee, K. Liou, K.S. Ryu, S.G. Kang, S.H. Chang,
Solid State Ionics 123 (1999) 251.
45. J. Evans, C.A. Vincent, P.G. Bruce, Polymer 28 (1987) 2324.
46. M.J. Hudson, C.A.C. Sequeira, J. Electrochem. Soc. 142
(1995) 4013.
47. T. Sreekanth, M.J. Reddy, S. Subramanyam, U.V. Subba Rao,
J. Power Sources 79 (1999) 105.
48. M.J. Reddy, P.P. Chu, Solid State Ionics 149 (2002) 115.
49. L. Fan, Z. Dang, C.W. Nan, M. Li, Electrochim. Acta 48
(2002) 205.
50. J.S. Chung, H.J. Sohn, J. Power Sources 112 (2002) 671.
51. K. Narin, M. Forsyhn, Solid State Ionics 86-88 (1996) 589.
52. M.S. Michael, M.M.E. Jacob, S.S.R. Prabaharan, Solid State
Ionics 98 (1997) 167.
53. W. Wieczorek, Z. Florjancyk, J.R. Stevens, Electrochim.
Acta 40 (1995) 2251.
54. J. Przyluski, M. Siekierski, W. Wieczorek, Electrochim.
Acta 40 (1995) 2101.
55. C. Capoglia, P. Mustarelli, E. Quartarone, C. Tomasi, A.
Magistris, Solid State Ionics 118 (1999) 73.
56. B. Choi, K. Shin, Solid State Ionics 86-88 (1996) 303.
57. Y. Liu, J.Y. Lee, L. Hong, J. Power Sources 109 (2002) 507.
58. F. Croce, L. Persi, B. Scrosati, F.S. Fiory, E. Plichta,
M.A. Hendrickson, Electrochim. Acta 46 (2001) 2457.
59. S.A. Hashmi, A. Kummar, K.K. Maurya, S. Chandra, J. Phys.
D: Appl. Phys. 23 (1990) 1307.
60. M.J. Reddy, P.P. Chu, Electrochim. Acta 47 (2002) 1189.
61. M.J. Reddy, H.M. Kao, P.P. Chu, Solid State Ionics 156
(2003) 141.
62. M.J. Reddy, P.P. Chu, J. Power Sources 115 (2003) 288.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔