(3.235.41.241) 您好!臺灣時間:2021/04/21 13:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭紹谷
研究生(外文):Sheu-Gu Jen
論文名稱:以流體化床氣化含浸觸媒甘蔗渣的實驗探討
論文名稱(外文):GASIFICATION OF IMPREGNATED-CATALYST SUGARCANE BAGASSE IN FLUIDIZED BED
指導教授:王榮基王榮基引用關係
指導教授(外文):Rong-Chi Wang
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:128
中文關鍵詞:生質物甘蔗渣含浸觸媒氣化流體化床
外文關鍵詞:biomasssugarcane bagasseimpregnated-catalystgasificationfluidized bed
相關次數:
  • 被引用被引用:1
  • 點閱點閱:148
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用甘蔗渣為燃料,以流體化床氣化含觸媒甘蔗渣之實驗探討。實驗是在一直徑90毫米的床體內進行,於不同操作條件下,包括進料溫度,水蒸氣/甘蔗渣比,空氣因子,甘蔗渣粒子大小以及含浸觸媒濃度及種類,探討對於生成氣體組成,碳轉化率,氣體熱值,氣體產率以及能量回收效率之影響。
由實驗結果發現,氣體產物如氫氣與二氧化碳會隨著進料溫度及水蒸氣/甘蔗渣比上升而增加,一氧化碳則反之。當增加空氣因子,則二氧化碳上升,但氫氣與一氧化碳會減少。碳轉化率,氣體產率及能量回收效率會隨著進料溫度,水蒸氣/甘蔗渣比及空氣因子上升而增加,氣體熱值則反之。當增加蔗渣粒子大小,則碳轉化率,氣體熱值,氣體產率及能量回收效率會隨之減少;而氣體組成並無影響。氣化含觸媒甘蔗渣時,氣體熱值會較不含觸媒甘蔗渣時為高。在本研究中,就甘蔗渣催化氣化反應來說,含浸10% ZnCl2 水溶液有最好的催化效果。

The catalytic gasification of sugarcane bagasse with mixtures of air and steam in a 90 mm I.D. fluidized bed was experimentally studied. The effects of experimental parameters such as feed temperature, steam/bagasse ratio, equivalence ratio, sugarcane bagasse particle size and impregnated catalytic concentration and species on the performance of produced gas composition, carbon conversion, gas calorific value, gas yield and energy recovery were investigated.
The experimental results indicate that H2 and CO2 contents of the produced gas increase with increasing feed temperature as well as steam/bagasse ratio. Gas calorific value for catalytic gasification is higher than those for non-catalytic gasification with increasing feed temperature, steam/bagasse ratio, equivalence ratio and sugarcane bagasse particle size. With increasing equivalence ratio, the CO2 content, carbon conversion, gas yield and energy recovery increase, but the contents of H2, CO and gas calorific value decrease. With increasing sugarcane bagasse particle size, the carbon conversion, gas calorific value, gas yield and energy recovery decrease, and gas compositions have no influence. The impregnated catalyst of 10% ZnCl2 is the best one in the fluidized bed sugarcane bagasse gasification.

TABLE OF CONTENTS
ACKNOWLEDGEMENTS……………………………………………………iii
ABSTRACT (ENGLISH)…………………………………………………iv
ABSTRACT (CHINESE)…………………………………………………v
TABLE OF CONTENTS……………………………………………………vi
LIST OF TABLES…………………………………………………………x
LIST OF FIGURES………………………………………………………xi
NOMENCLATURE……………………………………………………………xvii
CHAPTER
1 INTRODUCTION………………………………………………………1
2 LITERATURE SURVEY………………………………………………10
2.1 Biomass gasification…………………………………………10
2.2 Effect of temperature…………………………………………14
2.3 Effect of steam/biomass ratio………………………………18
2.4 Effect of equivalence ratio…………………………………23
2.5 Effect of biomass particle size……………………………29
2.6 Effect of catalyst……………………………………………31
3 EXPERIMENTAL………………………………………………………42
3.1 Experimental apparatus………………………………………42
3.2 Experimental material………………………………………46
3.3 Experimental procedure………………………………………48
3.3.1 Sugarcane bagasse gasification in a continuous
fluidized bed gasifier……………………………………51
3.4 Impregnated catalyst and washing of sugarcane………58
3.5 Carbon conversion and gas calorific value
calculation………………………………………………59
3.6 Gas yield and thermal efficiency………………………60
4 RESULTS AND DISCUSSION………………………………………62
4.1 Effect of feed temperature (Tf)…………………………62
4.2 Effect of steam/bagasse (S/B) ratio……………………72
4.3 Effect of equivalence ratio (ER)………………………79
4.4 Effect of sugarcane bagasse particle size………………86
4.5 Impregnated catalyst of ZnCl2………………………………93
4.5.1 Effect of ZnCl2 catalyst concentration
on H2 content………………………………………………102
4.5.2 Effect of ZnCl2 catalyst concentration
on CO content………………………………………………103
4.5.3 Effect of ZnCl2 catalyst concentration
on CO2 content………………………………………………103
4.5.4 Effect of ZnCl2 catalyst concentration
on CH4 content………………………………………………103
4.5.5 Effect of ZnCl2 catalyst concentration
on carbon conversion………………………………………104
4.5.6 Effect of ZnCl2 catalyst concentration
on gas calorific values…………………………………104
4.5.7 Effect of ZnCl2 catalyst concentration
on gas yield…………………………………………………104
4.5.8 Effect of ZnCl2 catalyst concentration
on energy recovery…………………………………………105
4.6 Effect of catalyst species……………………………………105
4.6.1 Effect of catalyst species on gas compositions………106
4.6.2 Effect of catalyst species on carbon conversion………112
4.6.3 Effect of catalyst species on gas calorific values……112
4.6.4 Effect of catalyst species on gas yield…………………112
4.6.5 Effect of catalyst species on energy recovery…………113
4.7 Comparison between the biomass combustion and
gasification………………………………………………………113
5 CONCLUSIONS……………………………………………………………120
REFERENCES………………………………………………………………121
LIST OF TABLES
3.1 Proximate and ultimate analyses of sugarcane
bagasse………………………………………………………………49
3.2 Analysis of sugarcane bagasse…………………………………50
3.3 Fluidized-bed experimental parameters………………………54
4.1 Operating conditions and experimental results of the
fluidized bed gasifier system for sugarcane bagasse
(produced gas sampling was collected after sugarcane
bagasse and steam being input to the bed about 1800 s,
silica sand: dps=0.701 mm,Ws=1400g) …………………………63
4.2 Overview of feed temperature factor on biomass
non-catalytic combustion and gasification…………………114
4.3 Overview of steam/biomass ratio factor on biomass
non-catalytic combustion and gasification…………………116
4.4 Overview of equivalence ratio factor on biomass non-
catalytic combustion and gasification………………………117
4.5 Overview of catalyst factor on biomass combustion and
gasification………………………………………………………119
LIST OF FIGURES
2.1 Main process, intermediate energy carries and final energy
products from the thermo-chemical conversion of biomass
(Mckendry et al., 2002a)………………………………………13
2.2 Effect of bed temperature on composition of gas
(Herguido et al., 1992)…………………………………………17
2.3 Effect of steam in the feed on product gas composition
(Rapagna et al., 2000)…………………………………………22
2.4 Effect of equivalence ratio on product gas composition
(Wang et al., 1992)……………………………………………25
2.5 Effect of biomass particle size on gas yield distribution,
●: 800℃; □: 750℃; △: 700℃; ■: 650℃; ◇: 600℃
(Rapagna and Latif., 1997)……………………………………32
3.1 Schematic diagram of continuous fluidized bed
gasifier……………………………………………………………43
3.2 Schematic diagram of screw feeder…………………………44
3.3 The original crushed sugarcane bagasse material
(Sugarcane bagasse is pelletised from Chin Fan
Mechanical Industrial Co, Model: PM510 Pellet Mill)
……………………………………………………………………47
3.4 Plot the pressure drop vs. the superficial gas velocity
for silica sand as well as silica sand with bagasse
mixture……………………………………………………………52
3.5 Temperature curves in the fluidized bed gasifier
(dp=2.578 mm, ER=0.47, S/B ratio=2)………………………55
3.6 Temperature curves in the fluidized bed gasifier
(dp=2.578 mm, ER=0.71, S/B ratio=2)………………………56
3.7 Temperature curves in the fluidized bed gasifier
(dp=2.578 mm, ER=0.71, S/B ratio=2.5)………………………57
4.1 Effect of feed temperature on produced gas compositions
(dp=2.578 mm, ER=0.71, S/B ratio=2)…………………………65
4.2 Effect of feed temperature on carbon conversion
(dp=2.578 mm, ER=0.71, S/B ratio=2)………………………66
4.3 Effect of feed temperature on gas calorific value
(dp=2.578 mm, ER=0.71, S/B ratio=2)………………………67
4.4 Effect of feed temperature on gas yield
(dp=2.578 mm, ER=0.71, S/B ratio=2)…………………………68
4.5 Effect of feed temperature on energy recovery
(dp=2.578 mm, ER=0.71, S/B ratio=2)…………………………69
4.6 Effect of S/B ratio on produced gas compositions
(dp=2.578 mm, ER=0.71, Tf=700℃)……………………………73
4.7 Effect of S/B ratio on carbon conversion
(dp=2.578 mm, ER=0.71, Tf=700℃)……………………………74
4.8 Effect of S/B ratio on gas calorific value
(dp=2.578 mm, ER=0.71, Tf=700℃)……………………………75
4.9 Effect of S/B ratio on gas yield
(dp=2.578 mm, ER=0.71, Tf=700℃)……………………………76
4.10 Effect of S/B ratio on energy recovery
(dp=2.578 mm, ER=0.71, Tf=700℃)……………………………77
4.11 Effect of equivalence ratio on produced gas
compositions (dp=2.578 mm, S/B ratio=2, Tf=700℃)……80
4.12 Effect of equivalence ratio on carbon conversion
(dp=2.578 mm, S/B ratio=2, Tf=700℃)………………………81
4.13 Effect of equivalence ratio on gas calorific value
(dp=2.578 mm, S/B ratio=2, Tf=700℃)..……………………82
4.14 Effect of equivalence ratio on gas yield
(dp=2.578 mm, S/B ratio=2, Tf=700℃)………………………83
4.15 Effect of equivalence ratio on energy recovery
(dp=2.578 mm, S/B ratio=2, Tf=700℃)………………………84
4.16 Effect of bagasse particle size on produced gas compositions (ER=0.71, S/B ratio=2, Tf=700℃)…………………87
4.17 Effect of bagasse particle size on carbon conversion
(ER=0.71, S/B ratio=2, Tf=700℃)……………………………88
4.18 Effect of bagasse particle size on gas calorific value
(ER=0.71, S/B ratio=2, Tf=700℃)…………………………89
4.19 Effect of bagasse particle size on gas yield
(ER=0.71, S/B ratio=2, Tf=700℃)……………………………90
4.20 Effect of bagasse particle size on energy recovery
(ER=0.71, S/B ratio=2, Tf=700℃)……………………………91
4.21 Effect of feed temperature on H2 content with different
impregnated ZnCl2 concentrations (dp=2.578 mm,
ER=0.71, S/B ratio=2)…………………………………………94
4.22 Effect of feed temperature on CO content with different
impregnated ZnCl2 concentrations (dp=2.578 mm,
ER=0.71, S/B ratio=2)…………………………………………95
4.23 Effect of feed temperature on CO2 content with different
impregnated ZnCl2 concentrations (dp=2.578 mm,
ER=0.71, S/B ratio=2)…………………………………………96
4.24 Effect of feed temperature on CH4 content with different
impregnated ZnCl2 concentrations (dp=2.578 mm,
ER=0.71, S/B ratio=2)…………………………………………97
4.25 Effect of feed temperature on carbon conversion with
different impregnated ZnCl2 concentrations (dp=2.578 mm,
ER=0.71, S/B ratio=2)…………………………………………98
4.26 Effect of feed temperature on gas calorific value with
different impregnated ZnCl2 concentrations (dp=2.578 mm,
ER=0.71, S/B ratio=2)…………………………………………99
4.27 Effect of feed temperature on gas yield with different
impregnated ZnCl2 concentrations (dp=2.578 mm,
ER=0.71, S/B ratio=2)…………………………………………100
4.28 Effect of feed temperature on energy recovery with
different impregnated ZnCl2 concentrations (dp=2.578 mm,
ER=0.71, S/B ratio=2)…………………………………………101
4.29 Effect of feed temperature on gas compositions with
different impregnated catalysts (dp=2.578 mm,
ER=0.71, S/B ratio=2)…………………………………………107
4.30 Effect of feed temperature on carbon conversion with
different impregnated catalysts (dp=2.578 mm,
ER=0.71, S/B ratio=2)…………………………………………108
4.31 Effect of feed temperature on gas calorific value with
different impregnated catalysts (dp=2.578 mm,
ER=0.71, S/B ratio=2)…………………………………………109
4.32 Effect of feed temperature on gas yield with different
impregnated catalysts (dp=2.578 mm, ER=0.71,
S/B ratio=2)……………………………………………………110
4.33 Effect of feed temperature on energy recovery with
different impregnated catalysts (dp=2.578 mm,
ER=0.71, S/B ratio=2)…………………………………………111

REFERENCES
Antal, M. J., W. E. Edwards, H. L. Friendman and F. E. Rogers, “A Study of the Steam Gasification of Organic Wastes,” Project to EPA, W. W. Liberick, Project Officer, (1978).
Asadullah, M., S. I. Ito, K. Kunimori and K. Tomishige, “Role of Catalyst and Its Fluidization in the Catalytic Gasification of Biomass to Syngas at Low Temperature,” Ind. Eng. Chem. Res., 41, 4567 (2002).
Beaumont, O. and Y. Schwob, “Influence of Physical and Chemical Parameters on Wood Pyrolysis,” Ind. Eng. Chem. Process Des. Dev., 23, 637 (1984).
Bevia, F. R., D. P. Rlco and A. F. M. Gomls, “Activated Carbon from Almond Shells. Chemical Activation. 1. Activating Reagent Selection and Variables Influence,” Ind. Eng. Chem. Prod. Res. Dev., 23, 266 (1984).
Bingyan, X., W. Chuangzhi, L. Zhengfen and Z. Xiguang, “Kinetic Study on Biomass Gasification,” Solar Energy, 49(3), 199 (1992).
Boateng, A. A., W. P. Walawender, L. T. Fan and C. S. Chee, “Fluidized-Bed Steam Gasification of Rice Hull,” Bioresource Technology, 40, 235 (1992).
Caglar, A. and A. Demirbas, “Hydrogen-Rich Gaseous Products from Tea Waste by Pyrolysis,” Energy Source, 23, 739 (2001a).
Caglar, A. and A. Demirbas, “Hydrogen Rich Gas Mixture from Olive Husk via Pyrolysis,” Energy Conversion and Management, 43, 109 (2002b).
Caglar, A. and A. Demirbas, “Conversion of Cotton Shell to Hydrogen Rich Gaseous Products by Pyrolysis,” Energy Conversion and Management, 43, 489 (2002c).
Caturla, F., M. M. Sabio and F. R. Reinoso, “Preparation of Activated Carbon by Chemical Activation with ZnCl2,” Carbon, 29(7), 999 (1991).
Chan, W. C. R., M. Kelbon and B. K. Brockett, “Single-Particle Biomass Pyrolysis: Correlations of Reaction Products with Process Conditions,” Ind. Eng. Chem. Res., 27, 2261 (1988).
Chen, C. H., C. T. Peng, R. Y. Chang, W. H. Hung and Y. Y. Lu, “Calorific Value of Bagasse in Taiwan,” Published By The Taiwan Sugar Research Institute, 120(4), 15 (1988).
Chen, Chia-Ming and Tracy M.-Y. Liao, “Relative Reactivity of Alkaline Extracts of Taiwanese Biomass Residues Toward Formaldehyde,” Biomass and Bioenergy, 20, 133 (2001).
Demirbas, A., “Gaseous Products from Biomass by Pyrolysis and Gasification: Effects of Catalyst on Hydrogen Yield,” Energy Conversion and Management, 43, 897 (2002).
Drift, A. V. D., J. V. Doorn and J. W. Vermeulen, “Ten Residual Biomass Fuels for Circulating Fluidized-Bed Gasification,” Biomass and Bioenergy, 20, 45 (2001).
Encinar, J. M., F. J. Beltran, A. Ramiro and J. F. Gonzalez, “Catalyzed Pyrolysis of Grape and Olive Bagasse. Influence of Catalyst Type and Chemical Treatment,” Ind. Eng. Chem. Res., 36, 4176 (1997).
Encinar, J. M., F. J. Beltran, A. Ramiro and J. F. Gonzalez, “Pyrolysis/ Gasification of Agricultural Residues by Carbon Dioxide in the Presence of Different Additives: Influence of Variables,” Fuel Processing Technology, 55, 219 (1998).
Ergudenler, A. and A. E. Ghaly, “Agglomeration of Alumina Sand in a Fluidized Bed Straw Gasifier at Elevated Temperatures,” Bioresource Technology, 43, 259 (1993).
Franco, C., F. Pinto, I. Gulyurtlu and I. Cabrita, “The Study of Reactions Influencing the Biomass Steam Gasification Process,” Fuel, 82, 835 (2003).
Gabra, M., H. Salman and B. Kjellstrom, “Development of A Sugar Cane Residue Feeding System for A Cyclone Gasifier,” Biomass and Bioenergy, 15(2), 143 (1998).
Gabra, M., E. Pettersson, R. Backman and B. Kjellstrom, “Evaluation of Cyclon Gasifier Performance for Gasification of Sugar Cane Residue-Part 1: Gasification of Bagasse,” Biomass and Bioenergy, 21, 351 (2001).
Galloway, T. R. and B. H. Sage, “A Model of the Mechanism of Transport in Packed, Distended, and Fluidized Beds,” Chem. Eng. Sci., 25, 495 (1970).
Garcia, L., M. L. Salvador, J. Arauzo and R. Bilbao, “Catalytic Steam Gasification of Pine Sawdust. Effect of Catalyst Weight/Biomass Flow Rate and Steam/Biomass Rations on Gas Production and Composition,” Energy and Fuels, 13, 851 (1999).
Gil, J., M. A. Caballero, J. A. Martin, M. P. Aznar and J. Corella, “Biomass Gasification with Air in a Fluidized Bed: Effect of the In-Bed Use of Dolomite under Different Operation Conditions,” Ind. Eng. Chem. Res., 38, 4226 (1999).
Gomez, E. O., L. A. B. Cortez, E. S. Lora, C. G. Sanchez and A. Bauen, “Preliminary Tests with A Sugarcane Bagasse Fueled Fluidized-Bed Air Gasifier,” Energy Conversion & Management, 40, 205 (1999).
Herguido, J., J. Corella and J. G. Saiz, “Steam Gasification of Lignocellulosic Residues in a Fluidized Bed at a Small Pilot Scale. Effect of the Type of Feedstock,” Ind. Eng. Chem. Res., 31, 1274 (1992).
Hoveland, D. A., W. P. Walawender, L. T. Fan and F. S. Lai, “Steam Gasification of Grain Dust in a Fluidized Bed Reactor,” Trans. ASAE, 25, 1076 (1982).
Hoppesteyn, P. D., W. D. Jong, J. Andries and K. R. G. Hein, “Coal Gasification and Combustion of LCV Gas,” Bioresource Technology, 65, 105 (1998).
Ibarra, J. V., R. Moliner and J. M. Palacios, “Catalytic Effects of Zinc Chloride in the Pyrolysis of Spanish High Sulphur Coals,” Fuel, 70, 727 (1991).
Ko, M. K., W. Y. Lee, S. B. Kim, K. W. Lee and H. S. Chun, “Gasification of Food Waste with Steam in Fluidized Bed,” Korean J. Chem. Eng., 18(6), 961 (2001).
Kunii, D. and O. Levenspiel, Fluidization Engineering, John Wiley, New York, (1969).
Kurkela, F. and P. Stahlberg, “Air Gasification of Peat, Wood and Bron Coal in a Pressurized Fluidized Bed Reactor. I. Carbon Conversion, Gas Yields and Tars Formation,” Fuel Processing Technology, 31, 1 (1992).
Lian, C. K. and M. E. Flndley, “Air-Blown Wood Gasification in a Large Fluidized Bed Reactor,” Ind. Eng. Chem. Process Des. Dev., 21, 699 (1982).
Mansaray, K. G., A. E. Ghaly, A. M. Al-Taweel, F. Hamdullahpur and V. I. Ugursal, “Air Gasification of Rice Husk in a Dual Distributor Type Fluidized Bed Gasifier,” Biomass and Bioenergy, 17, 315 (1999).
Mckendry, P., “Energy Production from Biomass (Part 2): Overview of Biomass,” Bioresource Technology, 83, 47 (2002a).
Mckendry, P., “Energy Production from Biomass (Part 3): Overview of Biomass,” Bioresource Technology, 83, 55 (2002b).
Moulijn, J. A. and F. Kapteijn, “Towards a Unified Theory of Reactions of Carbon with Oxygen Containing Molecules,” Carbon, 38(8), 1155 (1995).
Narvaez, I., A. Orio, M. P. Aznar and J. Corella, “Biomass Gasification with Air in an Atmospheric Bubbling Fluidized Bed. Effect of Six Operational Variables on the Quality of the Produced Raw Gas,” Ind. Eng. Chem. Res., 35, 2110 (1996).
Pan, Y. G., E. Velo, X. Roca, J. J. Manya and L. Puigjaner, “Fluidized-Bed Co-Gasification of Residual Biomass/Poor Coal Blends for Fuel Gas Production,” Fuel, 79, 1317 (2000).
Pengmei, L., J. Chang, Z. Xiong, H. Huang, C. Wu and Y. Chen, “Biomass Air-Steam Gasification in a Fluidized Bed to Produce Hydrogen-Rich Gas,” Energy and Fuels, 17, 677 (2003).
Ping, L., G. Xiaofen, W. Chuangzhi and Y. Chen, “Gasification Characteristics of Biomass Wastes in the Fluidized Bed Gasifier,” Journal of Propulsion and Power, 16(4), 606 (2000).
Pyle, D. L. and C. A. Zaror, “Heat Transfer and Kinetics in the Low Temperature Pyrolysis of Solid,” Chem. Eng. Sci., 39(1), 147 (1984).
Raman, K. P., W. P. Walawender and L. T. Fan, “Gasification of Feedlot Manure in a Fluidized Bed Reactor. The Effect of Temperature,” Ind. Eng. Chem. Process Des. Dev., 19, 623 (1980).
Raman, P., W. P. Walawender, L. T. Fan and C. C. Chang, “Mathematical Model for the Fluid-Bed Gasification of Biomass Materials. Application to Feedlot Manure,” Ind. Eng. Chem. Res., 20, 686 (1981).
Rao, T. R. and J. V. R. Bheemarasetti, “Minimum Fluidization Velocities of Mixtures of Biomass and Sands,” Energy, 26, 633 (2001).
Rapagna, S., E. Tempesti, P. U. Foscolo and E. Parodi, “Continuous Fast Pyrolysis of Biomass at High Temperature in a Fluidized Bed Reactor,” Journal of Thermal Analysis, 38, 2621 (1992).
Rapagna, S. and A. Latif, “Steam Gasification of Almond Shells in a Fluidized Bed Reactor: The Influence of Temperature and Particle Size on Product Yield and Distribution,” Biomass and Bioenergy, 12(4), 281 (1997).
Rapagna, S., N. Jand, A. Kiennemann and P. U. Foscolo, “Steam-Gasification of Biomass in a Fluidized-Bed of Olive Particles,” Biomass and Bioenergy, 19, 187 (2000).
Reinoso, F. R. and M. M. Sabio, “Activated Carbons from Lignocellulosic Materials by Chemical and/or Physical Activation: An Overview,” Carbon, 30(7), 1111 (1992).
Rodriguez, R., P. Magne and X. Deglise, “Sugar Cane Bagasse as a Feedstock for an Industrial Fast Pyrolysis Process under Cevelopment,” Journal of Analytical and Applied Pyrolysis, 12, 301 (1987).
Rolin, A., C. Richard, D. Masson and X. Deglise, “Catalytic Conversion of Biomass by Fast Pyrolysis,” Journal of Analytical and Applied Pyrolysis, 5, 151 (1983).
Rustamov, V. R., K. M. Abdullayev and E. A. Samedov, “Biomass Conversion to Liquid Fuel by Two-Stage Thermochemical Cycle,” Energy Convers. Mgmt., 39, 869 (1998).
Sada, E., H. Kumazawa and M. Kudsy, “Pyrolysis of Lignins in Molten Salt Media,” Ind. Eng. Chem. Res., 31, 612 (1992).
Saffer, M., A. Ocampo and C. Laguerie, “Gasification of Coal in a Fluidized Bed in the Presence of Water Vapor and Oxygen; an Experimental Study and a First Attempt at Modeling the Reactor,” Inter. Chem. Eng., 28(1), 46 (1988).
Scarrah, W. P., “Molten Salt Hydrocracking of Lignite. Screening of Viscosity Reducers and Hydrogen Sources,” Ind. Eng. Chem. Prod. Res. Dev., 19, 442 (1980).
Schoeters, J., K. Maniatis and A. Buekens, “The Fluidized-Bed Gasification of Biomass: Experimental Studies on Bench Scale Reactor,” Biomass, 19, 129 (1989).
Shaflzadeh, F., A. G. W. Bradbury, W. F. Degroot and T. W. Aanerud, “Role of Inorganic Additives in the Smoldering Combustion of Cotton Cellulose,” Ind. Eng. Chem. Prod. Res. Dev., 21, 97 (1982).
Singh, S. K., W. P. Walawender and L. T. Fan, “Steam Gasification of Cottonwood (Branches) in a Fluidized Bed,” Wood and Fiber Science, 18(2), 327 (1986).
Sutton, D., B. Kelleher and J. R. H. Ross, “Review of Literature on Catalysts for Biomass Gasification,” Fuel Processing Technology, 73, 155 (2001).
Tran. D. Q. and C. Rai, “A Kinetic Model for Pyrolysis of Douglas Fir Bark,” Fuel, 57, 293 (1978).
Trnka, O., V. Vesely, M. Hartman and Z. Beran, “Identification of the State of a Fluidized Bed by Pressure Fluctuations,” AIChE J., 46(3), 509 (2000).
Turn, S., C. Kinoshita, Z. Zhang, D. Ishimura and J. Zhou, “An Experimental Investigation of Hydrogen Production from Biomass Gasification,” Int. J. Hydrogen Energy, 23(8), 641 (1998a).
Turn, S. Q., C. M. Kinoshita, D. M. Ishimura and J. Zhou, “The Fate of Inorganic Constituents of Biomass in Fluidized Bed Gasification,” Fuel, 77(3), 135 (1998b).
Varhegyi, G. and M. J. A. Jr, “Simultaneous Thermogravimetric-Mass Spectrometric Studies of the Thermal Decomposition of Biopolymers. 2. Sugar cane Bagasse in the Presence and Absence of Catalysts,” Energy and Fuels, 2, 273 (1988).
Wachowska, H. and W. Pawlak, Fuel, 56, 422 (1977).
Walawender, W. P., D. A. Hoveland and L. T. Fan, “Steam Gasification of Pure Cellulose. 1. Uniform Temperature Profile,” Ind. Eng. Chem. Res., 24, 813 (1985).
Wang, Y., and C. M. Kinoshita, “Experimental Analysis of Biomass Gasification with Steam and Oxygen,” Solar Energy, 49(3), 153 (1992).
Wood, R. E. and W. H. Wiser, “Coal Liquefaction in Coiled Tube Reactors,” Ind. Eng. Chem. Process Des. Den., 15(1), 144 (1976).
Zanzi, R., K. Sjostrom. and E. Bjornbom, “Rapid High-Temperature Pyrolysis of Biomass in a Free-Fall Reactor,” Fuel, 75(5), 545 (1996).
Zhou, J., S. M. Masutani, D. M. Ishimura, S. Q. Turn and C. M. Kinoshita, “Release of Fuel-Bound Nitrogen during Biomass Gasification,” Ind. Eng. Chem. Res., 39, 626 (2000).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔