(3.230.76.48) 您好!臺灣時間:2021/04/13 15:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:簡維倫
研究生(外文):Wei-Lun Chien
論文名稱:利用射頻磁控濺鍍法沉積氮化鋁薄膜及其在表面聲波元件的應用
論文名稱(外文):Deposition of AlN films by RF magnetron sputtering for SAW application.
指導教授:羅吉宗羅吉宗引用關係
指導教授(外文):Jyi - Tsong Lo
學位類別:碩士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:46
中文關鍵詞:氮化鋁表面聲波射頻磁控
外文關鍵詞:AlNSAWRF sputtering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氮化鋁具有優良的壓電與光學特性,因此在表面聲波元件與積體光學的應用上極具潛力。本論文主要針對”氮化鋁/二氧化矽/矽”此結構的製作及其在表面聲波上之應用作探討。
表面聲波元件應用方面使用射頻磁控濺鍍法在P-type的矽基板上沉積氮化鋁薄膜,藉由改變濺鍍磁控頻率、腔室壓力、氮氣與氧氣濃度比、沉積溫度,而獲得表面平整、壓電性強的高C軸排向的氮化鋁薄膜,之後在薄膜上製作指叉狀電級換能器(IDTs),以探討氮化鋁薄膜之表面聲波特性。
沉積高C軸排向的氮化鋁薄膜的條件中,當磁控頻率控制在450W、腔室壓力在3mtorr、氮氣濃度比在50%、溫度在200 時可獲得高C軸排向的氮化鋁薄膜,薄膜厚度約在而氮化鋁薄膜特性利用XRD及SEM來觀察,並利用光微影與舉離法製作IDT;再利用網路分析儀分析SAW的元件特性。

Aluminum Nitride (AlN) has excellent piezoelectric and optical properties, which made it a prime candidate for SAW and integrated optical applications. In this dissertation, the fabrication of AlN/SiO2/Si structure for SAW and optical waveguide applications is studied in detail.
In SAW application, we deposited AlN thin film on p-type Silicon wafer with SiO2 Buffer layer by RF magnetron sputtering. In order to get the C-axis oriented aluminum nitride films by changing the rf power. sputtering pressure.N2 concentration and substrates temperature. Last we produced Interdigital transducers (IDTs) to discuss the SAW properties of AlN thin film.
The preferred orientation of AlN(002) thin films were prepared on Si(100) with SiO2 buffer layer by RF magnetron sputtering at 200 , 450 W, 3 mTorr with sputtering gas Ar and N2. We successfully grew highly PZT AlN(002) thin films on SiO2/Si(100) substrates annealed for 30 minutes at 450 .

Contents
Abstract (Chinese)………………………………………………………Ⅰ
Abstract (English)………………………………………………………Ⅱ
Acknowledgement……………………………………………………...Ⅲ
Contents………………………………………………………………...Ⅳ
Last of Tables………………………………………………………..…Ⅵ
Last of Figures………………………………………………….…..…ⅥI
Chapter 1. Introduction………………………………………..………1
Chapter 2. Background Topics …………...………………………...…3
2-1. Introduction……………..……………………………….…….3
2-2. Piezoelectric Materials……………………………………..….5
2-3. Characteristics of Piezoelectrics……………….………...…….6
2-3.1 Ferroelectric Materials………………..…………...………6
2-3.2 The Curie Point………………………..……………..……7
2-3.3 The Piezoelectric Hysteresis Loop………………………...8
2-4. Techniques for Fabricating Piezoelectric Films………….…….9
2-4.1 RF Sputtering………………………..…………………...10
2-4.2 The Advantages of RF Sputtering……………………….14
2-4.3 The Disadvantages of RF Sputtering………………….…15
2-5. Application of Piezoelectric Films……………………..…….15
2-6. Summary………………………………………………..…….16
Chapter 3. Theory…………………………....………..……………....17
3-1. Characteristics of Aluminum Nitride (AlN)…………….……17
3-1.1 Structural and Chemical Properties………………………18
3-1.2 Electrical Properties…………...…………………………18
3-1.3 Optical Properties…………...……………………………19
3-2. Theory of Surface Acoustic Wave (SAW) Devices …….……20
3-2.1 The Fundamental of SAW Devices………………..….…20
3-2.2 Phase Velocity……………………………………………21
3-2.3 Coupling Coefficient ………..………………….....…22
3-2.4 The IDT Design Parameters……………………….…......22
3-3. Specifying a Custom SAW Filter ……………………….……24
3-3.1 Main Specification Parameters…………………….….…24
3-4. Summary…………………….……………………………..…27
Chapter 4. AlN Thin Films with Preferential Orientation……….…28
4-1. AlN Thin Films Preparation…….…………………………....28
4-2. Deposition Parameters of AlN(002) Thin Film...………..…...29
4-2.1 The Effect of Substrate Temperature…………………….29
4-2.2 The Effect of Nitrogen Gas Concentration……………….30
4-2.3 The Effect of Deposition Pressure………………………..32
4-2.4 The Effect of RF Power…………………………………..34
4-3. Characteristics of AlN Thin Film……………………………..35
4-3.1 Thickness of AlN thin film……………………….……...35
4-3.2 Surface morphologies of AlN thin films……………..36
4-4. Summary…………………….……………………………..…37
Chapter 5. The Saw PropertiesOf AlN Thin Films………………….38
5-1. Introduction……………………...…………………….……...38
5-2. Photolithography Process………………………………..…...39
5-3. SAW Filetr of AlN Thin Films……………………………….42
5-4. Summary…………………….……………………………..…42
Chapter 6. Conclusion………………………………………..……….43
Refence

[1] C. Zaldo, D. S.Gill, and R. W. Eason, Appl. Phys. Lett.,vol.65, no. 4,pp.502-504,1994.
[2] T. Shiosaki, T. Yamamoto,T. Oda and A. Kawabata, Appl. Phys. Lett.,vol.36, 643,1980.
[3] J. Yang, C. Wang,, X. Yan, K. Tao, B. Liu and Y. Fan. Appl. Phys. Lett. vol.62, 2790,1993
[4] H.Okano, T. Tanaka, Y. Hirao, Y. Kobayashi, K. Shibata and S.
Nakano, Jpn. J. Appl. Phys. 31 (1992) 3017.
[5] R. D. Vispute, H. Wu and J. Narayan, Appl. Phys. Lett.,vol.67, 1549,1995.
[6] T.Atsuki et a., Jpn. J. Appl. Phys. 33 (1994) 5196-5200.
[7] H. Nakahata, H. Kitabayashi, T. Uemura, A. Hachigo. Jpn. J. Appl. Phys. 37 (1998) 2918.
[8] Thad E. Starner, Virtualskies NASA field center education.
[9] Ralph Petrino, Ronald Staut, and Dave Hipple, Piezoelectric Ceramics: Principles and Applications 1998.
[10] Bushan, Bharat, and B.K. Gupta. Handbook of Tribology.
McGraw Hill Inc. New York. 1991.
[11] Bunshah, Rointan F. Handbook of Deposition Technologies for Films and Coatings: Science, Technology, and Applications, Second Edition. Noyes Publications. New Jersey. 1991.
[12] Wachtman, John B. and Richard A Haber. Ceramic Films and Coatings. Noyes Publications. New Jersey. 1993.
[13] E S. Dettmer, B.M. Romenesko, H.K. Charles Jr., B.G. Carkhuff and D.J. Merrill,IEEE Trans. on Components, Hybrids, and Manufacturing Technol., 12, 543, (1989).
[14] H. Ott, Zeitschr. Physik, 22, 201, (1924).
[15] G.A. Jeffrey and G.S. Parry, J. Chem. Phys., 23, 406, (1953).
[17] E. Gabe, Y. Le Page and S.L. Mair, Phys. Rev. B, 24, 5634, (1981).
[18] C.F. Cline and J.S. Kahn, J. Electrochem. Soc., 110, 773, (1963).
[19] T.J. Davies and P.E. Evans, Nature, 207, 254, (1965).
[20] F.N. Tavadze, G.G. Surmava, A.A. Nikolaishivili and S.E. Makovets, Sov. Phys. Semicond., 15, 901, (1973).
[21] G.A. Slack and S.F. Bartram, J. Appl. Phys., 46, 89, (1975).
[22] W.M. Yim and R.J. Paff, J. Appl. Phys., 45, 1456, (1974).
[23] G.R. Kline and K.M. Lakin, Appl. Phys. Lett., 43, 750, (1983).
[24] V.A. Fomichev, Sov. Phys. Solid State, 10, 597, (1968).
[25] H.H. Madden and D.W. Goodman, Surf. Sci., 150, 39, (1985).
[26] N. Lieske and R. Hezel, J. Appl. Phys., 52, 5806, (1981).
[27] J.A. Taylor and J.W. Rabalais, J. Chem. Phys., 75, 1735, (1981).
[28] Y. Kido, M. Kakeno, K. Yamada, T. Hioki, J. Kawamoto and M. Tada, J. Phys. D,15, 2067, (1982).
[29] R.V. Kasowski and F.S. Ohuchi, Phys. Rev. B, 35, 9311, (1987).
[30] J. Hedman and N. Martensson, Phys. Scr., 22, 176, (1980).
[31] M. Gautier, J.P. Duraud and C. Le Gressus, Surf. Sci., 178, 201, (1986).
[32] M. Gautier, J.P. Duraud and C. Le Gressus, J. Appl. Phys., 61, 574, (1987).
[33] G.A. Slack and T.F. McNelly, J. Cryst. Growth, 34, 263, (1976).
[34] K.R. Elliott and R.W. Grant, Rockwell Project Final Report MRDC41116.2FR, (1984).
[35] K. Kawabe, R.H. Tredgold and Y. Inuishi, Elect. Eng. Japan, 87, 62, (1967).
[36] J. Edwards, K. Kawabe, G. Stevens and R.H. Tredgold, Solid State Comm., 3, 99, (1965).
[37] G.A. Cox, D.O. Cummins, K. Kawabe and R.H. Tredgold, J. Phys. Chem. Solids, 28,543, (1967).
[38] W.M. Yim, E.J. Stofko, P.J. Zanzucchi, J.I. Pankove, M. Ettenberg and S.L. Gilbert, J. Appl. Phys., 44, 292, (1973).
[39] T.L. Chu, D.W. Ing and A. J. Noreika, Solid State Electronics, 10, 1023, (1967).
[40] R. F. Rutz, Appl. Phys. Lett., 28, 379, (1976).
[41] W.M. Yim, E.J. Stofko, P.J. Zanzucchi, J.I. Pankove, M. Ettenberg and S.L. Gilbert, J. Appl. Phys., 44, 292, (1973).
[42] A.J. Noreika and M.H. Francombe, J. Vac. Sci. Technol., 6, 722, (1969).
[43] P.B. Perry and R.F. Rutz, Appl. Phys. Lett., 33, 319, (1978).
[44] H. Yamashita, K. Fukui, S. Misawa and S. Yoshida, J. Appl. Phys., 50, 896, (1979).
[45] J. Lagrenaudie, J. Chim. Phys., 53, 222, (1956).
[46] G.A. Cox, D.O. Cummins, K. Kawabe and R.H. Tredgold, J. Phys. Chem. Solids, 28,543, (1967).
[47] J. Pastrnak and L. Roskovcova, Phys. Status Solidi, 14, K5, (1966).
[48] E.A. Irene, V.J. Silvestri and G.R. Woolhouse, J. Electronic Mater., 4, 409, (1975).
[49] A.T. Collins, E.C. Lightowlers and P.J. Dean, Phys. Rev., 158, 833, (1967).
[50] J. Bauer, L. Biste and D. Bolze, Phys. Status Solidi A, 39, 173, (1977).
[51] J. J. Campbell and W. R. Jones, IEEE Trans. Sonics Ultrason., vol. SU-15, no. 4, pp.209-217, Oct., 1968.
[52] V. M. Ristic, John Wiley & Sons Inc., New York, 1978.
[53] B. A. Auld, John Wiley & Sons Inc., New York, 1973.
[54] H. Mattews, John Wiley & Sons Inc., New York, 1977.
[55] O. Yamazaki, T. Mistsuyu, and K. Wasa, IEEE Trans. Sonics Ultrason., vol. SU-27, no. 6, pp.369-379, Nov., 1980.
[56] M. Hatzakis, B.J. Canavello, and J.M Shaw. IBM J. Res. Develop., vol. 24, no. 4, pp. 452-460, July,1980

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔