(3.230.76.48) 您好!臺灣時間:2021/04/15 00:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:伍俊曄
研究生(外文):Wu Chun Yeh
論文名稱:0.07Pb(Mn1/3Nb2/3)O3-0.468PbZrO3-0.462PbTiO3壓電陶瓷雷射鍍膜之研究
論文名稱(外文):Pulsed Laser Deposition of 0.07Pb(Mn1/3Nb2/3)O3-0.468PbZrO3-0.462PbTiO3 Piezoelectric Ceramics
指導教授:林和龍
指導教授(外文):Hur-Lon Lin
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:92
中文關鍵詞:脈衝雷射鍍膜法優選取向緩衝層鈣鈦礦結構0.07(Pb(Mn1/3Nb2/3)O3-0.468(PbZrO3)-0.462(PbTiO3)
外文關鍵詞:pulsed laser depositionpreferred orientationbuffer layerperovskite structure0.07(Pb(Mn1/3Nb2/3)O3-0.468(PbZrO3)-0.462(PbTiO3)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:80
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本論文是利用具有快速鍍膜及可保持多元系統化學計量比的脈衝雷射鍍膜法( Pulsed Laser Deposition,PLD )來進行多元系壓電陶瓷0.07(Pb(Mn1/3Nb2/3)O3-0.468(PbZrO3)-0.462(PbTiO3) (PMnN-PZ-PT)壓電薄膜生長之研究,由實驗結果中發現在鍍膜流氧壓為10-1mbar、鍍膜溫度為450~575℃的條件下於Si(100)晶片上直接沈積PMnN-PZ-PT薄膜時會沈積出具有以Pb2Ti2O6結構(222)優選取向( preferred orientation )平面為主之焦綠石pyrochlore-type(π相)薄膜,此π相薄膜不具有壓電性,我們研究使用一些材料如YSZ、SrTiO3、La0.5Sr0.5CoO3(LSCO)等,當作PMnN-PZ-PT薄膜之緩衝層(buffer layer)材料,期待能夠幫助PMnN-PZ-PT生長成具有鈣鈦礦結構(perovskite structure)之PMnN-PZ-PT壓電薄膜,此外,在本實驗研究中亦嘗試改變YSZ中Y2O3之添加量,以改變YSZ晶格常數大小,得到不同晶格大小之YSZ緩衝層薄膜。研究薄膜之緩衝層在不同晶格常數大小及不同晶體結構的狀態下對PMnN-PZ-PT薄膜生長之差異。結果顯示SrTiO3、LSCO在鍍膜流氧壓為10-2mbar、鍍膜溫度為700℃下鍍膜後,於SrTiO3、LSCO薄膜上再沈積PMnN-PZ-PT(鍍膜流氧壓10-1mbar、鍍膜溫度為525℃)時,SrTiO3、LSCO皆能夠有效幫助PMnN-PZ-PT薄膜成長成具有優選取向之perovskite structure薄膜,並且發現PMnN-PZ-PT薄膜之成長平面方向將受到緩衝層之影響。在本研究論文中亦以SEM分析薄膜之表面及破斷面微結構分析,發現鍍膜次數的增加將明顯增加薄膜表面之粗糙度,並且薄膜是以柱狀晶之方式成長。
最後,本實驗使用LSCO為PMnN-PZ-PT薄膜之電極層,進行PMnN-PZ-PT薄膜之P-E曲線電性量測,觀察PMnN-PZ-PT薄膜在不同膜厚及不同優選取向生長平面下其電性的表現,結果顯示在PMnN-PZ-PT (110)(0.4μm)/LSCO/Si(100)之P-E曲線中,其飽和極化值(Ps)為43.88μC/cm2、殘留極化值(Pr)=33.13μC/cm2、矯頑電場(Ec)為67.33 KV/cm,而PMnN-PZ-PT(100)(1.2μm)/LSCO/Si(100)狀態下之P-E曲線,飽和極化值(Ps)為52.72μC/cm2、殘留極化值(Pr)為35.77μC/cm2、矯頑電場(Ec)為31.3 KV/cm。

In this research, we studied the growth of 0.07(Pb(Mn1/3Nb2/3))O3 - 0.468(PbZrO3) - 0.462(PbTiO3) (PMnN-PZ-PT) piezoelectric thin film which was prepared by using pulsed laser deposition (PLD), one thin film preparation method which has the advantages of high depositing rate and maintaining the stoichiometrical ratio. The preferred oriented pyrochlore-type Pb2Ti2O6(222) thin film was formed on Si(100) substrate at 475~550℃ in 10-1mbar O2 atmosphere. Some thin film materials like YSZ, SrTiO3 and La0.5Sr0.5CoO3 were also prepared, as buffer layers for PMnN-PZ-PT thin film deposition. These buffer layers can assist to formation the perovskite structure PMnN-PZ-PT thin film. Moreover, in this study we tried to change the content of Y2O3 in the composition of YSZ, in order to vary the lattice constant of YSZ to obtain the different lattice constant buffer layers. Comparing how much influence on the PMnN-PZ-PT thin film with the different lattice constant of the YSZ buffer layers. At last, SrTiO3 and La0.5Sr0.5CoO3 were also deposited at 700℃ in 10-2mbar O2 atmosphere and both of them covered with the PMnN-PZ-PT thin film ( at 525℃ in 10-1mbar O2 atmosphere ). We found that the SrTiO3 and La0.5Sr0.5CoO3 buffer layer could help the PMnN-PZ-PT thin film formed as preferred oriented perovskite structure thin film. And the preferred orientation plane were influenced by the material of buffer layer. We also analyzed the surface morphology and cross-section view of thin films with scanning electron microscope. When the deposition cycles were incresed, the surface morphology were more rough and the thin film were crystallized with columnar grains.
The hysteresis(P-E) curves were measured with the La0.5Sr0.5CoO3 bottom electrode layers. The ferroelectric properties of PMnN-PZ-PT(110)(0.4μm)/LSCO/Si(100) are as follows : saturation polarization Ps=43.88μC/cm2, remnant polarization Pr=33.13μC/cm2, and coercive field Ec=67.33 KV/cm. In comparison, the ferroelectric properties of PMnN-PZ-PT(100)(1.2μm)/LSCO/Si(100) are as follows : saturation polarization Ps=52.72μC/cm2, remnant polarization Pr=35.77μC/cm2, and coercive field Ec=31.3 KV/cm.

Contents
Cover…………………………………………………………………1
Abstract ( Chinese )……………………………………………2
Abstract ( English )……………………………………………………4
Acknowledgements……………………………………………………6
Contents………………………………………………………………7
List of figures………………………………………………………10
List of tables……………………………………………………………15
Chapter1. Introduction………………………………………………16
Chapter2. Experimental Principles and Paper Reviews……………18
2-1、Piezoelectricity……………………………………………………18
2-2、The Basic Principle of Piezoelectricity………………………19
2-3、Piezoelectricity and Appliying of PZT Ceramics……………20
2-4、The Introduction of
Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3 Ceramics…………22
2-5、Buffer Layer Materials - YSZ and SrTiO3……………………22
2-6、Electrode Layer Material - La0.5Sr0.5CoO3……………………23
2-7、The Principle of Pulsed Laser Deposition……………………24
2-8、Thin Film Growth and Surface Dynamics…………………………26
Chapter3. Experimental Procedures…………………………………29
3-1、Target Preparation…………………………………………………29
3-1-1、PMnN-PZ-PT……………………………………………………29
3-1-2、YSZ……………………………………………………………30
3-1-3、SrTiO3……………………………………………………………31
3-1-4、La0.5Sr0.5CoO3……………………………………………………31
3-2、Thin Film Preparation……………………………………………32
3-2-1、Pulsed laser deposition (PLD) system……………………32
3-2-2、Process of Thin Film Fabrication…………………………32
3-3、Measurement of Thin Film Properties……………………………33
3-3-1、Phase Identification……………………………………………33
3-3-2、Microstructure…………………………………………………33
3-3-3、Electrical Properties Measurements…………………………34
Chapter4. Results and Discussion………….…………………………35
4-1、Preparation of PMnN-PZ-PT Thin Film………………………….35
4-1-1、Phase Forming of PMnN-PZ-PT/Si(100) Thin Film…………35
4-1-2、Deposition Temperature Variation on PMnN-PZ-PT/ Si(100)
Thin Film……………………………………………………35
4-1-3、Deposition Oxygen Partial Pressure Variation on PMnN-
PZ-PT/ Si(100) Thin Film………………………………………37
4-1-4、Influence of Si(100) Substrate on PMnN-PZ-PT Thin Film……38
4-1-5、Multi-deposition of PMnN-PZ-PT Thin Film…………………38
4-2、Influence of Different Buffer Layers on PMnN-PZ-PT/
Si(100) Thin Film………………………………………………39
4-2-1、Phase Forming of PMnN-PZ-PT/YSZ/Si(100) Thin Film……40
4-2-2、Influence of Different Content of Y2O3 on YSZ and PMnN-PZ-PT Thin Film………………………………41
4-2-3、Phase Forming of PMnN-PZ-PT/SrTiO3/Si(100)Thin Film…42
4-2-4、Preparation of LSCO/ Si(100) Electrode Thin Film………43
4-2-5、Phase Forming of PMnN-PZ-PT/ LSCO/ Si(100) Thin Film…43
4-3、Electrical Measurement of P-E Hysteresis on PMnN-
PZ-PT/ LSCO/ Si(100) Thin Film…………………………………44
Chapter5. Conclusion………………………………………………45
Reference……………………………………………………………47
List of figures
Figure 2-1. Electric classification of ceramics…………………54
Figure 2-2. Applied stress causes: (a) non-piezoelectric effect ;(b)、(c) piezoelectric effect………………………55
Figure 2-3. Phase diagram of PZT………………………………………56
Figure 2-4. The history of laser technology and applications………57
Figure 2-5. The potential diagram of molecular AB★……………58
Figure 2-6. Schematic illustration of vacuum chamber…………59
Figure 2-7. Schematic illustration of thin film growth :
(a)Frank-Van der Merve; (b) Stranski-Krastanov;
(c)Volmer-Weber…………………………………………60
Figure 2-8. Schematic illustration of thermal dynamic of
thin film growth……………………………………………61
Figure 3-1. Schematic illustration of PLD system :
(1). Laser equipment ; (2). Mirror ; (3). Focussing lens ;
(4). Target ;(5).Gas flow ; (6). Substrate ;(7). Heater ;
(8). Window ; (9). Turbo pump;(10). Mechanical pump ;
(11). MFC ; (12). Thermocouple……………………………62
Figure 4-1-a. XRD spectrum of PMnN-PZ-PT/Si(100) at 400~450℃
under 10-1mbar oxygen partial pressure…………………63
Figure 4-1-b. XRD spectrum of PMnN-PZ-PT/Si(100) at 475~550℃
under 10-1mbar oxygen partial pressure…………………64
Figure 4-1-c. XRD spectrum of PMnN-PZ-PT/Si(100) at 575~700℃
under 10-1mbar oxygen partial pressure……………………65
Figure 4-2. JCPDS(26-0142) of Pb2Ti2O6…………………………66
Figure 4-3. EDX analysis of PMnN-PZ-PT/Si(100) thin film……67
Figure 4-4-a、b、c. The morphology of PMnN-PZ-PT/Si(100) thin film surface and fractured surface by SEM analysis…68
Figure 4-5. XRD spectrum of PMnN-PZ-PT(10-1mbar、525℃)/Si(100) thin film annealing at 700~900℃ for15 mins…………69
Figure 4-6. XRD spectrum of PMnN-PZ-PT (525℃)/Si(100) thin film
with different deposition oxygen partial pressure…………70
Figure 4-7. XRD spectrum of PMnN-PZ-PT(10-1mbar、525℃)/Si(100)
with 12 cycles deposition…………………………………71
Figure 4-8. XRD spectrum of glancing angle of PMnN-PZ-PT
(10-1mbar、525℃)/Si(100) with 12 cycles deposition……72
Figure 4-9-a、b、c. The morphology of PMnN-PZ-PT (12 cycles
deposition) (10-1mbar、525℃)/Si(100) thin film surface and
fractured surface by SEM analysis……73
Figure 4-10-a. XRD spectrum of YSZ (70%moleZrO2-30%moleY2O3)/
Si(100) at 350~425℃ under 10-2mbar oxygen partial
pressure………………………………………………74
Figure 4-10-b. XRD spectrum of YSZ (70%moleZrO2-30%moleY2O3)/
Si(100) at 475~550℃ under 10-2mbar oxygen partial pressure…75
Figure 4-11-a. XRD spectrum of PMnN-PZ-PT(10-1mbar、525℃)/
YSZ(70%moleZrO2-30%moleY2O3)( 10-2mbar、
400~425℃)/Si(100)……………………………………76
Figure 4-11-b. XRD spectrum of PMnN-PZ-PT(10-1mbar、525℃)/
YSZ(70%moleZrO2-30%moleY2O3)( 10-2mbar、
475~550℃)/Si(100)……………………………………77
Figure 4-12-a、b、c. The morphology of PMnN-PZ-PT (10-1mbar、
525℃) / YSZ (70%moleZrO2-30%moleY2O3)
(10-2mbar、450℃)/ Si (100) thin film surface
and fractured surface by SEM analysis………78
Figure 4-13. XRD spectrum of YSZ (94%moleZrO2-6%moleY2O3)
(10-2mbar、450℃)、YSZ (92%moleZrO2-8%moleY2O3)
(10-2mbar、450℃)、YSZ (70%moleZrO2-30%moleY2O3)
(10-2mbar、450℃)/Si(100)………………………………79
Figure 4-14. XRD spectrum of PMnN-PZ-PT(10-1mbar、525℃)/
YSZ ( 94%moleZrO2-6%moleY2O3)( 10-2mbar、450℃)、
YSZ ( 92%moleZrO2-8%moleY2O3)( 10-2mbar、450℃)、
YSZ ( 70%moleZrO2-30%moleY2O3)( 10-2mbar、450℃)/
Si(100)……………………………………………………80
Figure 4-15. XRD spectrum of SrTiO3/Si(100) at 500~700℃
under 10-2mbar oxygen partial pressure…………………81
Figure 4-16. XRD spectrum of PMnN-PZ-PT(10-1mbar、525℃)/
SrTiO3(10-2mbar、500~700℃)/Si(100)…………………82
Figure 4-17. The morphology of PMnN-PZ-PT(10-1mbar、525℃)/
SrTiO3(10-2mbar)/Si(100) thin film surface
by SEM analysis…………………………………………83
Figure 4-18-a. XRD spectrum of LSCO/Si(100) thin film at
400~500℃ under 10-2 mbar oxygen partial pressure…………84
Figure 4-18-b. XRD spectrum of LSCO/Si(100) thin film at
550~650℃ under 10-2 mbar oxygen partial pressure…………85
Figure 4-19. XRD spectrum of PMnN-PZ-PT(10-1mbar、525℃)
2 cycles and PMnN-PZ-PT(10-1mbar、525℃) 5 cycles /
LSCO(10-2mbar、500℃)/Si(100)………………………86
Figure 4-20. XRD spectrum of glancing angle of PMnN-PZ-PT
(10-1mbar、525℃) with 5 cycles deposition /
LSCO(10-2mbar、500℃)/Si(100)………………………87
Figure 4-21. The P-E curve of PMnN-PZ-PT(10-1mbar、525℃)
2 cycles (0.4μm) /LSCO(10-2mbar、500℃)/Si(100)……88
Figure 4-22. The P-E curve of PMnN-PZ-PT(10-1mbar、525℃)
5 cycles (1.2μm) /LSCO(10-2mbar、500℃)/Si(100)……89
List of tables
Table 2-1. The relations between crystalline structure and
electricity…………90
Table 3-1. The deposition condition of PMnN-PZ-PT/Si(100)……91
Table 3-2. The deposition condition of PMnN-PZ-PT/Si(100) with
different oxygen partial pressure……………………………91
Table 3-3. The multi-deposition condition of PMnN-PZ-PT/Si(100)
…91
Table 3-4. The deposition condition of YSZ/Si(100)……………91
Table 3-5. The deposition condition of SrTiO3/Si(100)………91
Table 3-6. The deposition condition of PMnN-PZ-PT/SrTiO3/Si
(100)…92
Table 3-7. The deposition condition of LSCO/Si(100)…………92
Table 3-8. The deposition condition of PMnN-PZ-PT/LSCO/Si(100)
…92

~Reference~
1. P.F. GOBIN, G. GUENIN, M. MORIN, M. SALVIA AND J.
TATIBOUET,” Smart Materials: A Future for Composites,”
Journal of Intelligent Material Systems and Structures, vol. 7- May, 353-357, 1996.
2. B. Jaffe, W. Cook and H. Jaffe: Piezoelectric Ceramics,
London: Academic Press(1971)
3. W. G. Cady: Piezoelectricity, New York: McGraw-Hill, Revised
Edition by Dover Publications(1964)
4. 高橋,坪內,大野:信學會,電子回路部品,材料研究會,CPM71-72
(1971)
5. D.F. Bahr, J.S. Robach, J.S. Wright, L.F. Francis, W.W.
Gerberich, Materials Science and Engineering A259 (1999) 126- 131
6. Yung-Chun Lee, Shi Hoa Kuo, Sensors and Actuators A 94
(2001) 129-135
7. C. Campbell: Surface Acoustic Wave Devices and Their Signal
Processing Applications, San Diego, Calif. Academic Press
(1989)
8. Paul Muralt, Associate Member, IEEE, Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control. Vol. 17.
no.4. JULY 2000
9. Brett Piekarski, Don DeVoe, Madan Dubey, Roger Kaul, John
Conrad, Sensors andActuators A 91 (2001) 313-320
10. 陳銘堯, 『脈衝雷射蒸鍍法的原理及應用』 26-28.
11. G. H. Haertling, "Current status of thin/thick films
ferroelectrics",Ceram.Trans., 25, (1992), p.1.
12. D. Berlincourt, H. H. A. Krueger and B.Jaffe,” Stability
of Phases in Modified Lead Zirconate With Variation in
Pressure, Electric Field, Temperature and Composition,” J.
Phys. Chem. Solids, Vol.25, 659-674,1964.
13. S.Wakabayashi, M. Sakata, H. Goto, M. Takeuahi and
T.Yada,” Static Characteristics of Piezoelectric Thin Film
Buckling Actuator”, Japs, J. Appl. Phys., Vol.35, 5012-5014,
1996
14. M. H. Francombe, "Ferroelectric films and their device
applications ", Thin Solid Films, 13, (1972), p.413.
15. B. Jaffe. W. R. Cook Jr.. and H. Jaffe: 1-5 in
Piezoelectric Ceramics: Ch. 1. pp.1-5. Academic Press. New
York.1971
16. H. Jaffe and D. A. Berlincourt. “Piezoelectric Transducer
Materials.” Proc. IEEE.53 [10] 1372-86 (1965)
17. G. H. Haertling, “Piezoelectric and Electrooptic
Ceramics”; pp.135-225 in Ceramic Materials for Electronics.
Edited by R. C. Buchanan. Marcel Dekker, New York,1986
18.“以射頻磁控賤鍍法製備(BaTiO3/SrTiO3)n基層介電薄膜並探討微
結構和電性之關係”蕭富元, 碩士論文, 2000.
19. “脈衝雷射鍍膜法製備鈣鈦礦型鐵電薄膜之研究” 葉明華, 博士
論文, 1994.
20. “TEM and XRD Characterization of Epitaxially Growth PbTiO3
Prepared by Pulsed Laser Deposition”, A. E. De. Veirman, J.
Timmers, F. J. G. Hakkens, J. F. M. Cillessen and R. M. Wolf,
philips J. Res., p.p.185-201, 1993.
21. “Comparision of Planar to Columnar Transformation of PtSi
Layer Growth Process”, Y. Kumagai, K. Ishimoto and S.
Hashimoto, Jpn. J. Appl. Phys. 34, p.p.4621-4626, 1995.
22. ”Ferroelectric La-Sr-Co-O/Pb-Zr-Ti-O/La-Sr-Co-O
Heterostructures on Silicon Via Temperature Growth, R.Ramesh,
H. gilchrist, T. Sands and V. G. Keramidas Appl. Phys.
Lett.63, p.p.3592-3594, 1993.
23. “Oriented Ferroelectric La-Sr-Co-O/Pb-Zr-Ti-O/La-Sr-Co-O
Heterostructures on (001) Pt/SiO2/Si Substrates Using a
bismuth Titanate Template Layer”, R. ramesh, J. Lee, T.
Sands, and V. G. Keramidas, Appl. Phys. Lett. 64, p.p.2511
-2513,1994.
24. J. P. Zheng and H.S. Kwok,”Low resistivity indium tin
oxide films by pulsed laser deposition”, Appl. Phys. Lett, 63
[1], PP.1,(1993)
25. Y. A. Boikov, S. K. Esayan, Z. G. Ivanov, G. Brorsson, T.
Claeson, J.Lee and A. Safari,”Epitaxial grownth and
properties of YBa2Cu3Ox-
Pb(Zr0.6Ti0.4)O3-YBa2Cu3Ox triayer structure by laser
ablation”, Appl.Phys. Lett.,61(5), PP.528,(1992)
26. P. Tiwari, X.D. Wu, S. R. Foltyn, M. Q. Le, I. G.Campbell,
R. C. Dye,and R. E. Muenchausen”Epitaxial Yba2Cu3O7-x thin
films on SrRuO3/Pt/MgO”,Appl.Phys.Lett.,64[5],PP.634~636,
(1994)
27. E. J. Tarsa, J. S. Speck,and McD. Robinson,”Pulsed laser
depositionof epitaxial silicon/h-
Pr2O3/siliconheterostructure”,Appl.Phys.Lett.,
63[4],PP.539~541,(1993)
28. “Polycrystalline La0.5Sr0.5CoO3 / PbZr0.53Ti0.47O3 /
La0.5Sr0.5CoO3 Ferroelectric capactitors on Platinized Silicon
with No Polarization Fatigue”, R. Dat, D. J. Lichtenwalner,
O. Auciello and A. I. Kingon, Appl. Phys. Lett., 20,p.p.2673
-2675,1994.
29. G. H. Haertling,”Ferroelectric thin films for electric
applications”,J.Vac.Sci.Technol.A9(3),(1991),p.414.
30. K. Reichelt and X.Jiang,”The preparation of thin films by
physical vapour deposition methods”, Thin Solid Films,191
,(1990),p.91.
31. R. W. Whatmore, P. C. Osbond and N. M. Shorrocks, “Ferroelectric materials for thermal IR
detectors”,Ferrelectris,76,(1987),p.351.
32. T. Okada, N. Shibamaru, Y. Nakayama, and M. Maeda,
”Investigations of behavior of particles generated from laser
ablated Yba2Cu3O7-x target using laser induced
fluorescence”,Appl.Phys.Lett.,60(80),(1992),p.941.
33. S. A. Darke and Y. F. Tyson,”Interaction of laser
radiation with solid materials and its significance to
analytical spectrometry-A review”J. Analy. Atom.Spect.,8
,(1993),p.145.
34. J. F. Eloy,”First ages of the coherent electromagnetic
waves generation applied to new materials transfer processes
named laser ablation”, European Mat.Res.Soc.Mono.4,(1992),p.3.
35. X. D. Wu, T. Venkatesan, A. Inam,X.X.Xi,”Pulsed laser
deposition of high Tc superconducting thin films”present and
future”,Mat.Res.Soc.Symp.Proc.,191,(1990),p.129.
36. T. A. Znotins, D. Poulin, and J. Reid,”Excimer lasers” an
exerging technology in materials processing”,Laser Focus,May
,(1987),p.54.
37. M. H. R. Hutchinson,”Excimers and excimer
lasers”,Appl.Phys.,21,(1980),p.95.
38. Excimer Lasers,edited by Ch, K. Rhodes, Topics in Applied
Physics Vol.30,(1984).
39. “脈衝雷射蒸鍍法的原理與應用” 陳銘堯
40. “Laser Applications in Surface Science and Technology”
H. G. Rubahn p.p.31
41. Naoki WAKIYA, Kazuo SHINOZAKI and Nobuyasu MIZUTANI,
Journal of the Ceramic Society of Japan 110[5] 358-361 (2002)
42. Naoki WAKIYA, Bok-Hee KIM, Kazuo SHINOZAKI and Nobuyasu
MIZUTANI, Journal of the Ceramic Society of Japan 102 [6] 612
-615 (1994)
43. Frederic Chaput and Jean-Pierre Boilot, Joural of the
Amerian Society, 72 [8] 1335-57 (1989)
44. C. Tantigate and A. Safari, Microelectronic Engineering 29
(1995) 115-118
45. W.Biegel, R. Klarmann, M. Hanika, K. Sturn, B. Stritzker,
Materials Science and Engineeting B56 (1998) 195-199
46. L’H. HAMEDI, M. GUILLOUX-VIRY, A. PERRIN, M.H.
CHERKANI, Ann. Chim. Sci. Mat, 1998, 23, pp. 337-380
47. Naoki Wakiya, Tomoaki Yamada, Kazuo Shinozaki, Nobuyasu
Mizutani, Thin Solid Films 371 (2000) 211-217
48. Morito, K., Suzuki, T. and Fujimoto, M., Jpn. J. Appl.
Phys., 40, 1310-14 (2001)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔