(3.230.173.249) 您好!臺灣時間:2021/04/21 05:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴中原
研究生(外文):Chung-Yuan Lai
論文名稱:磷酸鋰鈦基固態電解質的製備
論文名稱(外文):Preparation and Characterization of LiTi2(PO4)3-based Solid Electrolytes
指導教授:吳溪煌
指導教授(外文):She-Huang Wu
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:72
中文關鍵詞:固態反應法溶膠-凝膠法固態電解質燒結溫度Li3PO4交流阻抗法
外文關鍵詞:solid-state reactionsol-gel methodsolid electrolytesintering temperatureLi3PO4AC Impedance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以固態反應法及溶膠-凝膠法製備LiTi2(PO4)3(LTP)粉末,並以不同燒結條件製備LTP及含不同Li3PO4添加量的LTP基固態電解質試片,及測量各項燒結性質。分析燒結試片之結晶構造。及交流阻抗法測量燒結試片的離子導電度,探討離子導電度與試片組成,燒結條件及燒結物特性間之關係。以固態反應法製得的LTP電解質,燒結試片之離子導電度有隨燒結溫度上升而增高的趨勢,1200oC燒結之試片之離子導電度為2.24×10-5 S/cm。但在1250oC燒結下,試片會扭曲熔融。固態反應法得到的LTP粉末中加入Li3PO4所得的燒結試片中,發現Li3PO4有幫助燒結及提高緻密度的作用。其中以LTP:Li3PO4莫耳比為1:0.2,經900oC燒結者具有最佳的離子導電度,為2.27×10-5 S/cm。以溶膠-凝膠法製作的LTP試片,經800oC燒結即可得最佳體導電度為2.67×10-5 S/cm的燒結試片。但無法以溶膠-凝膠法直接合成添加Li3PO4之LTP燒結體。

The sintered LiTi2(PO4)3 samples were prepared with solid-state reaction and sol-gel methods. The effects of sintering conditions and amounts of Li3PO4 addition on the crystalline structure, properties of sintering, and ionic conductivity of sintered samples were investigated. It is found that densities and ionic conductivities of sintered samples increase with increasing sintering temperature. The sample sintered at 1200oC exhibits ionic conductivity of 2.24×10-5 S/cm. However, melting was found when sample sintered at 1250oC. With the addition of Li3PO4, the compactness of sintered sample was enhanced. Among the samples those contain various amounts of Li3PO4, the sample with LTP:Li3PO4 molar ratio of 1:0.2 and been sintered at 900oC shows the highest ionic conductivity of 2.27×10-5 S/cm. The 800oC sintered LTP sample derived from sol-gel method manifests ionic conductivity of 2.67×10-5 S/cm which is higher than those of solid-state reaction prepared samples, though LTP-based solid electrolyte with excess in Li3PO4 as those of solid-state reaction prepared can not be prepared directly by sol-gel method.

英文摘要----------------------------------------------------------------------------I
中文摘要---------------------------------------------------------------------------II
目錄--------------------------------------------------------------------------------III
表目錄-----------------------------------------------------------------------------V
圖目錄----------------------------------------------------------------------------VI
第一章 前言----------------------------------------------------------------------1
第二章 文獻回顧----------------------------------------------------------------3
2-1 固態電解質材料的發展-----------------------------------------------3
2-2 含鋰固態電解質材料的發展-----------------------------------------4
2-3 NASICON材料的發展------------------------------------------------9
2-4 固態電解質在鋰離子電池的應用--------------------------------- 11
2-5 固態電解質材料之選擇 --------------------------------------------12
2-6 交流阻抗法之原理 --------------------------------------------------14
第三章 實驗方法---------------------------------------------------------------18
3-1 LTP基電解質塊材試片之製備-------------------------------------18
3-1.1 以固態反應法合成LiTi2(PO4)3塊材----------------------------18
3-1.2 以固態反應法合成含過量Li3PO4之LTP基塊材------------19
3-1.3 以溶膠-凝膠法合成LiTi2(PO4)3--------------------------------19
3-2 性質測試----------------------------------------------------------------21
3-2.1 材料鑑定-----------------------------------------------------------21
3-2.2 粉末與燒結試片表面形態的鑑定----------------------------21
3-2.3 孔隙率測定-------------------------------------------------------21
3-2.4 粉末粒徑測定----------------------------------------------------22
3-2.5 導電度測定-------------------------------------------------------22
第四章 結果與討論------------------------------------------------------------24
4-1 燒結溫度對LTP塊材的影響----------------------------------------24
4-2 Li3PO4添加量對LTP基電解質特性的影響----------------------25
4-3 溶膠-凝膠法製備之LTP塊材---------------------------------------28
第五章 結論---------------------------------------------------------------------31
參考文獻 ----------------------------------------------------------------------- 32
List of Tables
Table. 4-1 The calculated lattice constants of LTP phase in the solid-state reaction prepared LiTi2(PO4)3 samples sintered at various temperatures for 2 hours-------------------------------34
Table. 4-2 Average particle size of LTP and LTP+0.2Li3PO4 powders determined by Mastersizer with different dispersive reagent-------------------------------------------------------------34
Table. 4-3 The calculated lattice constants of LTP phase in the solid-state reaction prepared LTP+xLi3PO4 bulk those were sintered at 900OC for 2 hours with the amount of Li3PO4 content-------------------------------------------------------------35
Table. 4-4 The calculated lattice constants of LTP phase in the solid-state reaction prepared LTP+xLi3PO4 bulk those were sintered at 1000OC for 2 hours with the amount of Li3PO4 content-------------------------------------------------------------35
Table. 4-5 The calculated lattice constants of LTP phase in the solid-state reaction prepared LTP+xLi3PO4 bulk those were sintered at 1050OC for 2 hours with the amount of Li3PO4 content-------------------------------------------------------------36
Table. 4-6 The calculated lattice constants of LTP phase in the 800OC 2 hours sintered LiTi2(PO4)3 samples with sol-gel derived powders calcined at various temperatures--------------------36
List of Figures
Fig. 2-1 Schematic Diagram of NASICON-type structure----------------37
Fig. 2-2 Schematic Diagram of Li3N single crystal------------------------38
Fig. 2-3 Polyhedral crystal structure view along (00) ofγ-Li3PO4. The lighter shaded tetrahedra are PO4.The LiO4 tetrahedra are dark and gray shading------------------------------------------------------39
Fig. 2-4 NASICON-type structure of LiM2(PO4)3, M = Ge, Ti, Hf, Zr----------------------------------------------------------------------- 40
Fig. 2-5 Particle models of LTP+xLi3PO4-----------------------------------41
Fig. 2-6 Matched electrolyte window----------------------------------------42
Fig. 2-7 Typical impedance plot and equivalent circuit for an electrochemical system----------------------------------------------43
Fig. 2-8 Equivalent circuit of polycrystalline LISICON electrolyte-----43
Fig. 3-1 Schematic diagram of the electrodes on LiTi2(PO4)3 samples--44
Fig. 3-2 The equivalent circuit used for impedance analysis-------------45
Fig. 4-1 The XRD patterns of solid-state reaction prepared LiTi2(PO4)3 samples sintered at various temperatures for 2 hours------------46
Fig. 4-2 Variation of porosity of the solid-state reaction prepared LiTi2(PO4)3 samples with sintering temperatures----------------47
Fig. 4-3 Variation of shrinkage rates of the solid-state reaction prepared LiTi2(PO4)3 samples with sintering temperatures----------------48
Fig. 4-4 Variation of ionic conductivities of solid-state reaction prepared LiTi2(PO4)3 samples with sintering temperature-----------------49
Fig. 4-5 SEM photographs of solid-state reaction prepared LiTi2(PO4)3 samples. Sintered at (a)1000OC and (b) 1100OC for 2 hours---50
Fig. 4-6 The XRD patterns of LTP+xLi3PO4 powders calcined at 900OC for 2 hours-------------------------------------------------------------51
Fig. 4-7 SEM photographs of (a)LiTi2(PO4)3 powder and (b) LTP+0.2Li3PO4 powder calcined at 900OC for 2 hours---------52
Fig. 4-8 The XRD patterns of 900OC sintered LTP+xLi3PO4 samples-----------------------------------------------------------------53
Fig. 4-9 The XRD patterns of 1000OC sintered LTP+xLi3PO4 samples-----------------------------------------------------------------54
Fig. 4-10 The XRD patterns of 1050OC sintered LTP+xLi3PO4 samples-----------------------------------------------------------------55
Fig. 4-11 Variation of porosity of the 900OC sintered LTP+xLi3PO4 samples with the amount of Li3PO4 content----------------------56
Fig. 4-12 Variation of porosity of the 1000OC sintered LTP+xLi3PO4 samples with the amount of Li3PO4 content----------------------57
Fig. 4-13 Variation of porosity of the 1050OC sintered LTP+xLi3PO4 samples with the amount of Li3PO4 content----------------------58
Fig. 4-14 Variation of shrinkage rates of the 900OC sintered LTP+xLi3PO4 samples with the amount of Li3PO4 content----------------------59
Fig. 4-15 Variation of shrinkage rates of the 1000OC sintered LTP+xLi3PO4 samples with the amount of Li3PO4 content-----60
Fig. 4-16 Variation of shrinkage rates of the 1050OC sintered LTP+xLi3PO4 samples with the amount of Li3PO4 content-----61
Fig. 4-17 Ionic conductivities of 900OC sintered LTP+xLi3PO4 samples-----------------------------------------------------------------62
Fig. 4-18 SEM photographs of 900OC sintered LTP+xLi3PO4 samples with various amounts of Li3PO4 content. (a)LiTi2(PO4)3 ; (b) LTP+0.1Li3PO4 ; (c)LTP+0.2Li3PO4; (d) LTP+0.3Li3PO4----63
Fig. 4-19 Ionic conductivities of 1000OC sintered LTP+xLi3PO4 samples-----------------------------------------------------------------64
Fig. 4-20 Ionic conductivities of 1050OC sintered LTP+xLi3PO4 samples-----------------------------------------------------------------65
Fig. 4-21 SEM photographs of 1050OC sintered LTP+xLi3PO4 samples with various amounts of Li3PO4 content. (a)LiTi2(PO4)3 , (b) LTP+0.1Li3PO4 , (c)LTP+0.2Li3PO4, (d) LTP+0.3Li3PO4------66
Fig. 4-22 The XRD patterns of sol-gel derived LiTi2(PO4)3 powders calcined at various temperatures for 6 hours---------------------67
Fig. 4-23 The XRD patterns of 800OC 2 hours sintered LiTi2(PO4)3 samples with sol-gel derived powders calcined at various temperatures-----------------------------------------------------------68
Fig. 4-24 Ionic Conductivities of 800OC 2 hours sintered LiTi2(PO4)3 samples with sol-gel derived powders calcined at various temperatures-----------------------------------------------------------69
Fig. 4-25 Porosity of 800OC 2 hours sintered LiTi2(PO4)3 samples with sol-gel derived powders calcined at various temperatures------70
Fig. 4-26 SEM photographs of 800OC 2 hours sintered LiTi2(PO4)3 samples and calcined at (a)700OC; (b)800OC; (c) 900OC-------71
Fig. 4-27 The XRD patterns of sol-gel derived LTP+0.1Li3PO4 powder calcined at 700OC for 6 hours------------------------------

1. J. B. Goodenough, H. Y.-P Hong, J. A. Kafalas, Mater. Res. Bull. 11 (1976) 203.
2. B. E. Taylor, A. D. English, T. Berzins, Mat. Res. Bull. 12 (1977) 171.
3. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, J. Electrochem. Soc., 140 (1993) 1827.
4. Z-X. Lin, H-J. Yu, S-Ch. Li, S-B. Tian, Solid State Ionics, 31 (1988) 91.
5. S-Ch. Li, Z-X. Lin, Solid State Ionics, 9&10 (1983) 835.
6. S. Hamdoune, and D. Tranqui, Solid State Ionics, 18&19 (1986) 587.
7. M. A. Subramanian, R. Subramanian, A. Clearfield, Soid State Ionics, 18-19 (1986) 562.
8. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, J. Electrochem. Soc., 137 (1990) 1023.
9. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, J. Electrochem. Soc., 137 (1989) 590.
10. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, Chem. Lett. (1990) 331.
11. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, Solid State Ionics, 47 (1991) 257.
12. T. Takahashi, S. Ikeda, O. Yamamoto J. Electrochem. Soc. 119 (1972) 477.
13. M. Tatsumisago, Y. Shinkuma, T. Minami, Nature 354 (1991) 217.
14. N. Weber, and J. T. Kummer, Proc. Annu. Power Sources Conf. 119 (1972) 477.
15. P. G. Bruce, Solid State Chemistry, (1995) 32-45.
16. H. Aono, N. Imanaka, G. Adachi, Acc. Chem. Res. 27 (1994) 265.
17. P. J. Gellings, and H. J. M. Bouwmeester, The CRC Handbook of Solid State Electrochemistry Chap.6, p207~213.
18. J. H. Kennedy, Mat. Chem. Phys. 23 (1989) 121.
19. A. Hayashi, R. Araki, R. Komiya, K. Tadanaga, M. Tatsumisago, T. Minami, Solid State Ionics, 113-115 (1998) 733.
20. M. Tatsumisago, S. Hama, A. Hayashi, H. Morimoto, T. Minami, Solid State Ionics, 154-155 (2002) 635.
21. A. Hayashi, Y. Ishikawa, S. Hama, T. Minami, M. Tatsumisago, Electrochemical and Solid-State Letters, 6 (2003) A47.
22. M. Makyta, A. Levasseur, P. Hagenmuller, Mat. Res. Bull. 19 (1984) 1361.
23. H. Rabaâ, and R. Hoffmann, J. Solid State Chemistry, 145 (1999) 619.
24. A. D. Robertson, A. R. West, A.G. Ritchie, Solid State Ionics, 104 (1997) 1.
25. U. V. Alpen, M. F. Bell, W. Wichelhaus, Electrochimica Acta. 13 (1978) 1395.
26. C. Delmas, A. Nadiri, J. L. Soubeyroux, Solid State Ionics 28-30 (1988) 419.
27. Y. Ito, K. Miyauchi, T. Oi, J. Non-Cryst. Solids, 57 (1983) 389.
28. A. Orliukas, A. Dindune, Z. Kanepe, J. Ronis, E. Kazakevicius, A. Kežionis, Solid State Ionics, 157 (2003) 177.
29. Y. Kobayashi, T. Takeuchi, M. Tabuchi, K. Ado, H. Kageyama, J. Power Sources 81-82 (1999) 853.
30. K. Takada, K. Fujimoto, T. Inada, A. Kajiyama, M. Kouguchi, S. Kondo, M. Watanabe, Appl. Surf. Sci. 189 (202) 300.
31. N. Machida, K. Fujii, T. Minami, Chemistry Letters, (1991) 367.
32. J. Fu, Solid State Ionics, 96 (1997) 195.
33. B. V. R. Chowdari, G. V. Subba Rao, G. Y. H. Lee, Solid State Ionics, 136-137 (2000) 1067.
34. J. B Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck , J. of Power Sources, 43-44 (1993) 103.
35. J. B. Goodenough, Solid State Ionics, 94 (1997) 17.
36. A. J. Bard, and L. R. Faulkner, Electrochemical Methods, p350~353.
37. P. G. Bruce, and A. R. West, J. Electrochem. Soc. 130 (1983) 662.
38. B. A. Boukamp, Solid State Ionics 20 (1986) 31.
39. A. Robertson, J. G. Fletcher, J. M. S. Skakle, A. R. West, J. Solid State chemistry, 199 (1994) 53.
40. T. Mithuhashi, and O. J. Kleppa, J. Am. Ceram. Soc. 62 (1979) 356.
41. Y. Kobayashi, M, Tabuchi, O. Nakamura, J. of Power sources, 68 (1997) 407.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔