(3.237.20.246) 您好!臺灣時間:2021/04/16 06:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳正男
研究生(外文):CHENG-NAN CHEN
論文名稱:機械合金化法合成Mg-Zn-Al系二元及三元中間相之研究
論文名稱(外文):Synthesis of Binary and Ternary Intermediate Phases in Mg-Zn-Al System by Mechanical Alloying
指導教授:吳新明
指導教授(外文):Hsin-Ming Wu
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:112
中文關鍵詞:鋅粉末機械合金化法真空退火
外文關鍵詞:AlMgZn powdersmechanical alloyingvacuum annealing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本研究以機械合金化法合成Mg-Zn、Al-Mg、Al-Zn相圖,及Mg-Al-Zn三元相圖之各中間相,並探討加熱對機械球磨粉末之熱行為影響。實驗結果顯示,Mg-Zn二元系統中,對於各起始成分,若Zn的含量較多,較易直接球磨合成新相,且隨著Mg含量的增加,合成新相的速率較慢。除了Mg70Zn30起始成分外,其餘各成分經球磨後均可獲得對應於該起始成分之合金相及其它相之混合組織。Al-Mg二元系統中,除起始成分Al70Mg30外,其餘起始成分均能球磨生成對應於該起始成分或其兩旁之中間相。Al-Zn二元系統中,根據球磨粉末層片狀組織之消失及球磨粉末之飽和硬度值,可判定本研究Al-Zn粉末經球磨7小時已達合金化之程度,生成Al及Zn的固溶體混合相。而Mg-Al-Zn三元系統中,Al25Mg37.5Zn37.5起始成分經球磨5小時後,生成二十面體之準晶相。將此一二十面體準晶相之粉末在真空退火,則生成Mg32(Al,Zn)49結晶相。若再將此Mg32(Al,Zn)49結晶相施以球磨,則生成Mg32(Al,Zn)49、AlMg4Zn11及準晶相之混合組織。Al25Mg50Zn25起始成分雖偏離Mg32(Al,Zn)49相之成分線(Bergman線),經球磨退火後,未能生成對應於Al25Mg50Zn25成分之平衡相(Al2Mg5Zn2),反而生成Mg32(Al,Zn)49結晶相,故Mg32(Al,Zn)49相為Al-Mg-Zn系統中之穩定相。

This study was to synthesize the various intermediate phases in Mg-Zn, Al-Mg, Al-Zn, binary phase diagrams as well as in Al-Mg-Zn ternary phase diagram. The effects of heating on the thermal behavior of the milled powders were investigated The results showed that for the various starting compositions in the Mg-Zn binary system, if the amount of Zn is larger, it is easier to directly synthesize new phase. If the amount of Mg in the starting powder mixture is larger, the rate of phase formation is slower. Except for the Mg70Zn30 composition, mixture of powders that contains at least one intermediate phase having the starting composition can be obtained directly from ball milling. For the Al-Mg binary system, except for the Al70Mg30 starting composition, milling from all other compositions can obtain predominant phase corresponding to the starting composition together with other phases in the neighborhood of predominant phase. Based on the elimination of interlayer structure and the saturated hardness values in the milled powders, it is concluded that after milling for 7 hours on the Al50Zn50 powder mixture, alloying of the ingredient elements has been achieved. The end product is a mixture of Al and Zn solid solutions. For the Mg-Al-Zn ternary system, milling on starting composition Al25Mg37.5Zn37.5 for 5 hours ends up with the formation of icosahedral quasicrystalline phase. If the so-obtained icosahedral phase were vacuum annealed, a crystalline Mg32(Al,Zn)49 phase was acquired. Further milling on the crystalline Mg32(Al,Zn)49 powders will result in a mixture of Mg32(Al,Zn)49、AlMg4Zn11 and icosahedral quasicrysatline phase. Although the starting composition Al25Mg50Zn25 deviated from the composition line of Mg32(Al,Zn)49 (Bergman line), equilibrium phase  (Al2Mg5Zn2) corresponding to the starting composition Al25Mg50Zn25 cannot be synthesized from the milling plus annealing processes. Instead, a crystalline Mg32(Al,Zn)49 phase was formed. Therefore Mg32(Al,Zn)49 is the most stable phase in Mg-Al-Zn system.

Pages
摘要………………………………………………………………………I
ABSTRACT……………………………………………………………...I
TABLE OF CONTENTS………………………………………………..III
LIST OF TABLES………………………………………………………VI
LIST OF FIGURES…………………………………. ……………….VIII
CHAPTER 1: INTRODUCTION………………………………………...1
CHAPTER 2: LITERATURE REVIEW…………………………………4
2.1 Introduction to Intermetallic Compounds …...…………………. .5
2.2 Phases in Mg-Zn-Al Binary and Ternary Phase Diagrams……...7
2.2.1 Phases in Mg-Zn Binary System…………………………….7
2.2.2 Phases in Al-Mg Binary System………………………........11
2.2.3 Phases in Al-Zn Binary System………………..…………...12
2.2.4 Phases in Al-Mg-Zn Ternary System…………………… …13
2.3 Introduction to Quasicrystals……………………..……………. 14
2.3.1 Preparation of Quasicrystals…………………………..........15
2.3.2 Classification of Quasicrystals from Diffraction Patterns.....19
2.3.3 Quasicrystalline Alloy Systems…………………………….20
2.4 Mechanical Alloying…………………………………………… 24
2.4.1 Application of Mechanical Alloying to
Materials Production……………………………………… 26
CHAPETER 3: EXPERIMENTAL PROCEDURE…………………….29
3.1 Preparation for Starting Powders………………………………. 29
3.2 X-ray Diffraction Analysis……………………...........................29
3.3 Thermal Analysis……………………………………………….30
3.4 Vacuum Heat Treatment………………....…………………….. 30
3.5 Optical Microscopic Observations…………………………….. 30
3.6 Scanning Electron Microscopic Observations………………….30
CHAPTER 4: RESULTS AND DISCUSSIONS……………………….32
4.1 Mechanical Alloying Mg-Zn System and their Thermal
Annealing Response…..…………….…………………………..32
4.1.1 Structural Annealing of Different Mg-Zn Compositions
Subjected to Mechanical Alloying…..…………………….32
4.1.2 Thermal Analyses of Various Milled Mg-Zn Powders.…...38
4.1.3 SEM Images of Various Annealing Mg, Zn Powders……..39
4.2 Mechanical Alloying Al-Mg System and their Thermal
Annealing Response…..……………………………….………..39
4.2.1 Structural Annealing of Different Al-Mg Compositions
Subjected to Mechanical Alloying..………………..…….. 40
4.2.2 Thermal Analyses of Various Milled Al-Mg Powders.…...42
4.2.3 SEM Images of Various Annealing Mg, Zn Powders….....43
4.3 Structural Analyses and Hardness Measurement of Mechanical Alloyed Al50Zn50…................................................................... .. 44
4.4 Mechanical Alloying Mg-Zn-Al System and their Thermal
Annealing Response.……………………………………....…... 46
4.4.1 Structural Analysis of Mechanical Alloyed Al25Mg37.5Zn37.5 and Al25Mg50Zn25 Compositions.………………………... 46
4.4.2 Thermal Analyses of Mechanical Alloyed
Al25Mg37.5Zn37.5 and Al25Mg50Zn25 Powders…..………....50
4.4.3 SEM Images of As-Received Al, Mg, Zn Powders and Mechanical Alloyed Al25Mg37.5Zn37.5 and
Al25Mg50Zn25 Powders…..……………………. …………51
CHAPTER 5: CONCLUSIONS……………………………….............. 53
REFERENCES…………………..……………………………...............55

1. P. S. Gilman and J.S. Benjamin, Ann. Rec. Mater. Sci., (1983)279-330.
2. H. Romanus, V. Cimalla, J. A. Schaefer, L. Spieβ, G. Ecke, J. Pezoldt, Thin Solid Films, 359(2000)146-149.
3. B. K. Yen, J. Alloys and Compounds., 268(1998)266-269.
4. P. Matteaszz:, Gerard Le Caër and Alain Mocell, Ceramics International, 23(1997)39-44.
5. C. C. Koch and J. D. Whittenberger, Intemetallics, 4(1996)339-355.
6. M. Sherif El-Eskandarany, Metallurgical and Materials Transactious A, 27A(1996)2374.
7. J. S. Benjamin, Metall. Trans., 1(1970)2943.
8. E. Robert, Reed-Hill, ed., Physical Metallurgy Principles, 2nd edition, New York, Princeton, 1972, p.327.
9. J. H. Westbrook, ed., Intermetallic Compound, J. Wiley and Sons. Inc., New York,1967.
10. W.B. Pearson, ed., The Crystal Chemistry and Physic of Metals and Alloys, J. Wiley and Sons Inc., 1972.
11. W. Hume-Rothery, ed., Structure of Metals and Alloys, Institute of Metals, London, U. K., 1936.
12. G. Sauthoff, Intermetallics, in G. Sauthoff (ed.), Materials Science and Technology, Vol. 8, Structure and Properties of Nonferrous Metals, VCH, Weinheim, 1994, chapter 9.
13. R.W. Cahn, in FE.Fujita (ed.), Springer Series in Materials Sciences, Vol. 27, Springer-Verlag, Berlin/Heidelberg 1994, p.179.
14. C.C. Koch, C.T. Liu and N.S. Stoloff, ed., High-Temperature ordered Intermetallic Alloys I, Master. Res. Soc. Rroc., Pittsburgh 1985, p.33.
15. V.N. Gudzenko and A.F. Polesya, Izv. V. U. Z. Tsvetn. Met., 4(1973)144.
16. G. Eger, Z. Metallkd., 4(1913)29.
17. F. Laves, K. Löhberg, H. Witte, Metallwirtschaft., 14(1935)793.
18. G. Bergman, J.L.T. Waugh, L. Pauling, Nature., 169(1952)1057.
19. M. Hamasumi, Sci. Rep. Tôhoku Imp. Univ., 1936 (i), Honda Anniv., Vol.748.
20. J.B. Clark, Trans. Am. Soc. Met., 53(1961)295.
21. P. Donnadieu, A. Quivy, T. Tarfa, P. Ochin, A. Dezellus, M. Harmelin, P. Liang, H.L. Lukas, H.J. Seifert, F. Aldinger, G. Effernberg, Z. Metallkd., 88(1977)911.
22. D. Shechtamn, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett., 53(1984)195
23. L.A. Bendeersky, Phys. Rev. Lett., 55(1985)1461.
24. H.S. Chen, C.H. Chen, Phys. Rev., B33(1986)2814
25. D.M. Follstaedt, J.A. Knapp, Phys. Rev. Lett., 56(1986)1827.
26. Y. Saito, H.S. Chen, K. Mihama, Appl. Phys. Lett., 48(1986)581.
27. D.A. Lilienfeld, M. Nastasi, H.H. Johnson, D.G. Ast, J.W. Mayer, J. Mater. Res., 1(1986)237.
28. J. Eckert, L. Schultz, K. Urban, J. Mater. Sci. Eng., A133(1991)393.
29. U. Mizutani, T. Takeuchi, T. Fukunaga, Mater. Trans., Jpn. Inst. Met., 34(1993)102.
30. A.P. Tsai, T. Tsurui, A. Memezawa, K. Aoki, A. Inoue, T. Masumoto, Philos. Mag. Lett., 67(1993a)393.
31. P. Ramachandrarao, G.V.S. Satry, Pramāna 25(1985)L225.
32. C.L. Henley, V. Elser, Philos. Mag., B55(1986)59.
33. M. Cooper, K. Robinson, Acta Cryrstallogr., 20(1966)614.
34. G. Bergman, J.L.T. Waugh, L. Pauling, Acta Crystallogr., 10(1957)254.
35. L.X. He, Y.K. Wum K.H. Kuo, J. Mater. Sci. Lett., 7(1988b)1284.
36. M.D. Ball, D.J. Lloyd, Scr. Metall., 19(1985)1065.
37. N. Koshikawa, S. Sakamoto, K. Edagawa, S. Takeuchi, Jpn. J. Appl. Phys., 31(1992)L966.
38. Z. Luo, S. Zhang, Y. Tang, D. Zhao, Scr. Metall., 28(1993)1513.
39. T.J. Sato, E. Abe, A.P. Tsai, Jpn. J. Appl. Phys., A36(1997)L1038.
40. B.S. Murty, M.D. Naik, S. Ranganathan and M. Mohan, Mater. Forum., 16(1992)19.
41. P.Y. Lee and C.C. Koch, J. Non-Cryst. Solid., 94(1987)88.
42. Y.F. Zhang, L. Lu and S. M. Yap, Journal of Materials Processing Technology, 89-90(1999)260.
43. SA. Black Development of supercorroding alloys for used of timed releases for ocean engineering applications. H. Port, CA: Civil Engng. Lab. (Navy), 1979 Report 40.
44. P. Tessier, L. Zaluski, A. Zaluska, JO. Ström-Olsen, R. Schulz, Mater. Sci. Forum., 225-227(1996)869.
45. C. Suryanarayana and F.H. Froes, Nanostructured Mater., 3(1993)147.
46. A. A. Nayeb-Hashemi and J. B. Clark ed., Phase Diagram of Binary Magnesium Alloys, Metals Parks, Ohio, ASM, 1988.
47. Y. P. Yarmolyuk, P. I. Kripyakevich, and E. V. Melnik, Sov. Phys. Crystallogr., 20(1975)329.
48. L. Tarschisch, Z. Kristallogr., 86(1933)423
49. S. Samson, Acta Chem. Scand., 3(1949)835.
50. L. L. Ye, Z. G. Liu, M. X. Quan, and Z. Q. Hu, J. Appl. Phys., 80(1966)1910.
51. S. Xi, J. Zhou, D. Zhang, and X. Wang, Mat. Lett., 26(1996)245.
52. H. J. Frost and M. F. Ashby ed., Deformation Mechanism Maps, Pergamon Press, 1982.
53. J. F. Shackelford, W. Alexander, and J. S. Park CRC Materials Science and Engineering Handbook, CRC Press, 1994.
54. 吳新明、陳正男,2002海峽兩岸顆粒技術研討會,廣西,2002。
55. Y. L. Shoshin, R. S. Mudryy, E. L. Dreizin, Combustion and Flame, 128(2002)259-269
56. E. Ivanov, B. Bokhonov, I Konstanchok, Journal of Materials Science, 26(1991)1409-1411
57. G. Bergman, J.L.T. Waugh, L. Pauling, Acta. Cryst., 10(1957)254

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔