(3.227.235.183) 您好!臺灣時間:2021/04/13 22:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉建均
研究生(外文):Chien-Chin Liu
論文名稱:氣相成長碳纖維之製程參數研究
論文名稱(外文):The Study of Processing Parameters of Vapor-Grown Carbon Fibers
指導教授:曾信雄曾信雄引用關係
指導教授(外文):S.S.Tzeng
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:63
中文關鍵詞:氣相成長碳纖維化學氣相沉積
外文關鍵詞:vapor grown carbon fiberscatalytic chemical vapor depositionproduction yield
相關次數:
  • 被引用被引用:1
  • 點閱點閱:402
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本實驗中的氣相成長碳纖維是在1100到1400℃進行化學氣相沉積,並使用甲烷為碳的來源。催化劑為鐵的粒子,此處是將石墨基板涵浸於Fe(NO3)3 9H2O 溶液中,而Fe(NO3)3 9H2O為催化劑粒子的前驅體。實驗的結果顯示在氫氣/甲烷流量比為7的時候,可以得到一個相當大的產量。提升催化劑濃度從0.02M 到 0.03M 會使得碳灰的量增加同時纖維的平均直徑也會提升。對纖維直徑而言,溫度也是一個重要的影響條件,從實驗得知直徑最大值落在1300℃。 氫氣/甲烷流量為490/70,而沉積溫度為 1200℃的實驗中,將反應時間由30分鐘提升到90分鐘不會改變纖維的直徑分佈,但是會發現基板上產生相當多的碳灰或碳膜。由X光繞射及拉曼光譜分析中發現纖維的石墨化程度低,此狀況可以利用超過2000℃的熱處理來加以改善。

Abstract
Vapor grown carbon fibers were synthesized by catalytic chemical vapor deposition at temperatures between 1100 and 1400℃ using methane as the carbon source. Iron particles were used as the catalysts, which were prepared by substrate immersion using Fe(NO3)3 ˙9H2O as the precursor. Experimental results show a larger yield with a H2/CH4 ratio of 7. Increase of catalyst concentration from 0.02M to 0.03M was found to increase the amount of soot in addition to the increase of average fiber diameters. Temperature was also an important parameter affecting the fiber diameter, and a larger average fiber diameter was obtained at 1300℃ under present experimental conditions. For a H2/CH4 ratio of 490/70 and deposition temperature of 1200℃, an increase of reaction time from 30 to 90 minutes did not change in the diameter distribution, but the amount of soots and carbon films was increased. X-ray diffraction and Raman spectroscopy analyses indicate a poor degree of graphitization and heat-treatment above 2000℃ could improve the graphite crystallization significantly.

Contents
Abstract…………………………………………………………………I
Abstract (Chinese).…………………………………………………Ⅱ
Contents.………………………………………………………………Ⅲ
List of Figures…………………………………………………………V
List of Tables…………………………………………………………Ⅵ
Chapter 1 Preface……………………………………………………1
Chapter 2 Literature Reviews………………………………………3
2-1 Introduction……………………………………………3
2-2 The classification of VGCFs…………………………4
2-3 The development of VGCFs.……………………………4
2-4 How to fabricate VGCFs.………………………………5
2-4-1 Hydrocarbons.…………………………………5
2-4-2 Catalyst.………………………………………6
2-4-3 Carrier gas……………………………………7
2-5 Growth mechanism of VGCFs……………………………7
2-6 The characteristics of VGCFs.………………………9
2-7 Influential factors of fiber growth………………10
2-7-1 Pre-treatment of catalyst…………………10
2-7-2 Crystalline direction of catalyst………11
2-8 Application of VGCFs…………………………………12
2-9 Increasing the production of VGCFs.………………15
Chapter 3 Experimental Techniques.……………………………… 16
3-1 Substrate selection………………………………… 16
3-2 The catalyst.………………………………………… 17
3-3 Gas.…………………………………………………… 17
3-3-1 Purge gas.……………………………………17
3-3-2 Reaction gas………………………………… 17
3-4 The apparatus………………………………………… 18
3-5 Experimental procedures and parameter setup………18
3-5-1 Manufacturing process of fibers…………18
3-5-2 Macroscopic observation.…………………19
3-5-3 SEM observation.……………………………19
3-5-4 Structure analysis………………………… 20
Chapter 4 Results and Discussion.………………………………22
4-1 Different parameters vs. production.……………22
4-1-1 Hydrogen/methane proportion.……………22
4-1-2 The influence of total gas flow.…………23
4-1-3 The influence of catalyst concentration
vs. fiber production yield………………24
4-1-4 The surface condition vs. deposition
time.…………………………………………25
4-2 SEM diameter observation.…………………………27
4-2-1 The total flow rate vs. diameter of
VGCF……………………………………………27
4-2-2 Catalyst concentration vs. diameter
of fiber………………………………………28
4-2-3 The surface condition of graphite
substrate vs. diameters of fibers.………28
4-2-4 Deposition time vs. diameter.……………29
4-2-5 Deposition temperature vs. diameter……29
4-3 Morphology of fibers.………………………………31
4-4 X-ray diffration analyses…………………………32
4-5 Raman spectrum analyses.………………………… 33
Chapter 5 Conclusions.………………………………………………35
References……………………………………………………………62
List of Figures
Fig.2-1 BSU of carbon fibers.……………………………………37
Fig.2-2 The growth mechanism of carbon fibers.………………37
Fig.2-3 The electro-conductivity and thermal
conductivity of carbon fibers…………………………37
Fig.3-1 CVD system diagram.………………………………………38
Fig.3-2 Experimental process……………………………………38
Fig.3-3 Heating profile.…………………………………………38
Fig.4-1 (a)∼(d) VGCFs of different hydrogen/methane
ratio.…………………………………………39
Fig.4-2 (a)∼(d) VGCFs of different total gas flow………40
Fig.4-3 (a)∼(b) VGCFs of different catalyst
concentration.………………………………41
Fig.4-4 (a)∼(d) VGCFs of different deposition time
/surfacecondition.…………………………42
Fig.4-5 (a)∼(d) VGCFs diameter distribution of
different gas flow ratio.…………………43
Fig.4-6 Different hydrogen/methane flow vs. diameters.……44
Fig.4-7 VGCFs diameter distribution of different catalyst
concerntration……………………………………………45
Fig.4-8 VGCFs diameter distribution of different surface
condition.…………………………………………………46
Fig.4-9 VGCFs diameter distribution of different deposition
time…………………………………………………………47
Fig.4-10 VGCFs diameter distribution of different deposition
temperature.………………………………………………48
Fig.4-11 Different deposition temperature vs.
diameters.…………………………………………………44
Fig.4-12 (a)∼(e) VGCFs of different temperature………49∼51
Fig.4-13 (a)∼(e) VGCFs of different hydrogen
/methane.…………………………………52∼54
Fig.4-14 (a)∼(b) VGCFs of different catalyst
concentration…………………………………55
Fig.4-15 (a)∼(b) VGCF of different deposition
time.……………………………………………56
Fig.4-16 (a)∼(b) VGCF of different substrate
condition………………………………………57
Fig.4-17 XRD of VGCFs before/after heat treatment……………58
Fig.4-18 Raman spectra of different total gas flow……………59
Fig.4-19 Raman spectra of VGCFs before/after
heat treatment……………………………………………60
List of Tables
Table4-1 Experimental parameters.………………………………61
Table4-2 d002 Lc and La of VGCFs.……………………………………61

62
References
[1] M.Guigon, A. Oberlin and G. Desarmot, “Microtexture and Structure of some
High Tensil Strength, PAN-based Carbon Fibers “Fiber Sci. and Tech.,
1984;20.(55).
[2] Schutzenberger P, Schutzenberger LCR, Acad Sci Paris, 1890; 111:774.
[3] Huges TV, Chambers CR, Manufacture of carbon filaments, 1889, US
Patent no.405,480.
[4] Mukai SR, Masuda T, Harada T, Hashimoto K, Dominant hydrocarbon which
contributes to the growth of vapor grown carbon fibers, Carbon,1996;34
(5):645-648.
[5] Tesner PA, Robinovich EV, Rafalkes IS, Arefieva EF, Formation of carbon
fibers from acetylene, Carbon, 1970;8:435-442.
[6] Onuma Y, Koyama T, Carbon fibers obtained by thermal decomposition of
vaporized hydrocarbon, O. Buturi, 1963;32.(11):857-863.
[7] Egashira M, Katsuki H, Ogawa Y, Kawasumi S, Whiskerization of carbon
beads by vapor phase growth of carbon fibers to obtain sea unchin-type
particles, Carbon, 1983;21(1):89-92.
[8] Kato T, Matsumoto T, Saito T, Hayashi JI, Kusakabe K, Morooka S, Effect of
carbon source on formation of vapor grown carbon fiber, Carbon,
1993;31(6):937-940.
[9] Baker RTK, Chludzinski Jr. JJ, Lund CRF, Further studies of the formation of
filamentous carbon from the interaction of supported iron particles with
acetylene, Carbon, 1987;25(2):295-303.
[10] Tibbetts GG, in Carbon Fiber Filaments and Composites, edited by Figueiredo
JL, Bernardo CA, Baker RTK, and Hüttinger KJ, 1990:525-539.
[11] Serp Ph, Figueiredo JL, Carbon, 1996:1452-1454.
[12] Baker RTK, in Carbon Fiber Filaments and Composites, edited by Figueiredo
JL, Bernardo CA, Baker RTK, and Hüttinger KJ, 1990:405-439.
[13] Ting JM, Lake ML, High heat flux composites for plasma-facing materials J.
Nucl Mater., 1994:212-215.
[14] Ting JM, Lake ML, Vapor grown carbon fiber reinforced carbon composites
Carbon, 1995;33:663-667.
[15] Tibbetts GG, in Carbon Fiber Filaments and Composites, edited by Figueiredo
JL, Bernardo CA, Baker RTK, and Hüttinger, 1990:73-95.
[16] Tibbetts GG, Balogh MP, Increase in Yield of Carbon Fibers Grown Above the
Iron/Carbon Eutectic, Carbon, 1999;37: 241-247.
[17] Mukai SR, Masuda T, Hashimoto K, Iwanaga H, Physical Properties of Rapid
63
Grown Vapor-Grown Carbon Fibers, Carbon, 2000;38: 491-494.
[18] P.Gadelle, Quoc Toan Le, M.C. Schouler, Fe(NO3)3‧9H2O and Fe3(CO)12 as
catalyst precursors for the elaboration of VGCF : SEM and TEM
study-improvement of the process, Carbon, 1999;37: 505-514.
[19] M.S. Dresselhaus, G. Dresselhaus, K. Sugihara, I.L.Spain, H.A. Goldberg,
“Graphite Fibers and Filaments”, 1988: chapter2.
[20] P.L.Wang, Effects of Processing Parameters on the Structure and Properties of
Vapor-Grown Carbon Fibers prepared using a CH4 / H2 mixture, Master Thesis,
Dept. of Materials Eng. TTU 2000.
[21] C.J.Cheng, Effects of Substrate Preparation on Vapor Growth CarbonFiber/Tube
,Master Thesis, Dept. of Materials Eng. NCKU 2001.
[22] J.Heremans, Carbon, 1985;23: 431.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔