|
References 1. S. Iijima, Nature 354 (1991) 56. 2. J. M. Kim, W. B. Choi, N. S. Lee, and J. E. Jung, Diamond and Related Materials, 9 (2000) 1184. 3. A. T. Woolley, C. L. Cheung, J. H. Hafner, and C. M. Lieber, Chemistry & Biology, 7 (2000) R193. 4. A. Peigney, Ch. Laurent, E. Flahaut, and A. Rousset, Ceramics International, 26 (2000) 677. 5. S. Fan, W. Liang, H. Dang, N. Franklin, T. Tombler, M. Chapline, and H. Dai, Physica, E 8 (2000) 179-183. 6. A. F. Morpurgo, J. Kong, C.M. Marcus, and H. Dai, Physica B, 280 (2000) 382-383. 7. H. Dai, Surface Science, 500 (2002) 218. 8. Peter J. F. Harris, Carbon Nanotubes and Related Structures, Cambridge University Press, New York, 1999, p.18-37. 9. G. U. Sumanasekera, C. K. W. Adu, S. Fang, and P. C. Eklund, Phys. Rev. Letts., 85 (2000) 1096. 10. K. Masenelli-Varlot and E. McRae, N. Dupont-Pavlovsky, Applied Surface Science, 196 (2002) 209. 11. L. Grigorian, G. U. Sumanasekera, A. L. Loper, S. L. Fang, J. L. Allen, and P. C. Eklund, Phys. Rev. B, 60 (1999) 60. 12. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tpmanek, J. E. Fischer, and R. E. Smalley, Science, 273 (1997) 483. 13. S. L. Fang, A. M. Rao, P. C. Eklund, P. Nikolaev, A. G. Rinzler, and R. E. Smalley, J. Mater. Res., 13 (1998) 2405. 14. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Materials Science and Engineering, B19 (1993) 185. 15. M. Endo and H. W. Kroto, J. Phys. Chem., 96 (1992) 6941. 16. S. Iijima, T. Ichihashi, and Y. Ando, Nature, 356 (1992) 776. 17. S. Iijima, Materials Science and Engineering, B19 (1993) 172. 18. Y. C. Choi, D. J. Bae, Y. H. Lee, B. S. Lee, I. T. Han, W. B. Choi, N. S. Lee, and J. M. Kim, Synthetic Metals, 108 (2000) 159. 19. Y. L. Hsin, K. C. Hwang, F. R. Chen, and J. J. Kai, Adv. Mater, 13 (2001) 830. 20. Y. C. Sui, B. Z. Cui, R. Guardian, D. R. Acosta, L. Martinez, and R. Perez, Carbon, 40 (2002) 1011. 21. C. Journet, W. Maser, P. Bernier, A. Loiseau, M. Delachapelle, S. Lefrants, P. Deniards, R. Lee, and J. Fischer, Nature, 388 (1997) 756. 22. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998, p.73-83. 23. M. Su, B. Zheng, and J. Lin, Chemical Physical Letters, 322 (2000) 321. 24. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, and R. E. Smalley, Chemical physics Letters, 313 (1999) 91. 25. M. J. Bronikowski, P. A. Willis, D. T. Colbert, K. A. Smith, and R. E. Smalley, J. Vac. Sci. Technol., A 19 (2001) 1800. 26. I. W. Chiang, B. E. Brinson, A. Y. Huang, P. A. Willis, M. J. Bronikowski, J. L. Margrave, R. E. Smalley, and R. H. Hauge, J. Phys. Chem. B, 105 (2001) 8297. 27. Y. Maniwa, Y. Kumazawa, Y. Saito, H. Tou, H. Kataura, H. Ishii, S. Suzuki, Y. Achiba, A. Fujiwara, and H. Suematsu, Mol. Cryst. And Liq. Cryst., 340 (2000) 671. 28. G. E. Gadd, M. Blackford, S. Moricca, N. Webb, P. J. Evans, A. M. Smith, G. Jacobsen, S. Leung, A. Day, and Q. Hua, Science, 277 (1997) 933. 29. H. M. Cheng and Q. H. Yang, C. Liu, Carbon, 39 (2001) 1447. 30. F. Darkrim and D. Levesque, J. Phys. Chem., B 104 (2000) 6773. 31. C. Marliere, P. Poncharal, L. Vaccarini, and A. Zahab, Mat. Res. Soc. Symp. Proc., Vol. 593 (2000) 173. 32. B. K. Pradhan, G. U. Sumanasekera, Clement K. W. Adu, H. Romero, and P. C. Eklund, Mat. Res. Soc. Symp. Proc., 633 (2001) A14.20.1 33. P. Chen, X. Wu, J. Lin, and K. L. Tan, Science, 285 (1999) 91. 34. M. S. Dresselhaus, K. A. Wijliams, and P. C. Eklund, MRS Bulletin, Nov. 1999, p. 45-50. 35. P. A. Webb and C. Orr, Analytical Methods in Fine Particle Technology, Micromeritics Instrument Corp., Norcross, 1997, p.86-87. 36. K. A. Williams and P. C. Eklund, Chemical Physics Letters, 320 (2000) 352. 37. B. K. Pradhan, G. U. Sumanasekera, K. W. Adu, H. E. Romero, K. A. Williams, and P. C. Eklund, Physica B, 323 (2002) 115. 38. G. Stan and M. W. Cole, J. Low Temp. Phys., 110 (1998) 539. 39. G. Stan, V. H. Crespi, M. W. Cole, and M. Boninsegni, J. Low Temp. Phys., 113 (1998) 447. 40. G. Stan and M. W. Cole, Surf. Sci., 395 (1998) 280. 41. S. Talapatra, A. Z. Zambano, S. E. Weber, and A. D. Migone, Phys. Rev. Lett., 85 (2000) 138. 42. S. M. Gatica, M. J. Bojan, G. Stan, and M. W. Cole, J. Chem. Phys., 114 (2001) 3765. 43. G. Stan, M. J. Bojan, S. Curtarolo, S. M. Gatica, and M. W. Cole, Phys. Rev. B, 62 (2000) 2173. 44. S. M. Lee, K. S. Park, Y. C. Choi, Y. S. Park, J. M. Bok, D. J. Bae, K. S. Nahm, Y. G. Choi, S. C. Yu, N. G. Kim, T. Frauenheim, and Y. H. Lee, Synthetic Metals, 113 (2000) 209. 45. S. H. Jhi, S. G. Louie, and M. L. Cohen, Phy. Rev. Let., 85 (2000) 1710. 46. J. Zhao, A. Buldum, J. Han, and J. P. Lu, Nanotechnology, 13 (2002) 195. 47. P. A. Webb, and C. Orr, Analytical Methods in Fine Particle Technology, Micromeritics Instrument Corp., Norcross, 1997, p.53-153. 48. W. S. Borghard, E. W. Sheppard, and H. J. Schoennagel, Rev. Sci. Instrum., 62 (1991) 2801. 49. R. M. Suter, N. J. Colella, R. Gangwar, and W. Wang, Rev. Sci. Instrum., 58 (1987) 462. 50. S. Talapatra and A. D. Migone, Phy. Rev. Let., 87 (2001) 206106. 51. A. Bougrine, K. Varlot, N. D. Pavlovsky, J. Ghanbaja, D. Billaud, and F. Beguin, Mat. Res. Soc. Symp. Proc., Vol. 633 (2001) A14.7.1. 52. Y. Ye, C. C. Ahn, C. Witham, and B. Fultz, Appl. Phys. Lett., 74 (1999) 2307. 53. E. L. Pace and A. R. Siebert, J. Phys. Chem., 63 (1959) 1398. 54. A. C. Dillon, K. M. Jones, T. A. Bekkedahi, C. H. Kiang, D. S. Bethune, and M. J. Heben, Nature, 386 (1997) 377. 55. W. Teizer, R. B. Hallock, E. Dujardin, and T. W. Ebbesen, Phys. Rev. Lett., 84 (2000) 1844. 56. J. Kong, M. G. Chapline, and H. Dai, Adv. Mater., 13 (2001) 1384. 57. P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Science, 287 (2000) 1801. 58. A. Zahab, L. Spina, and P. Poncharal, Phys. Rev. B, 62 (2000) 10000. 59. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Science, 287 (2000) 622. 60. R. J. Chen, N. R. Franklin, J. Kong, J. Cao, T. W. Tombler, Y. Zhang, and H. Dai, Appl. Phys. Lett., 79 (2001) 2258. 61. O. K. Varghese, P. D. Kichambre, D. Gong, K. G. Ong, E. C. Dickey, and C. A. Grimes, Sensors and Actuators B, 81 (2001) 32. 62. K. G. Ong, K. Zeng, and C. A. Grimes, IEEE Sensor Journal, 2 (2002) 82. 63. S. Chopra, A. Pham, J. Gaillard, A. Parker, and A. M. Rao, Appl. Phys. Lett., 80 (2002) 4632. 64. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, Appl. Phys. Lett., 73 (1998) 2447. 65. B. G. Streetman, Solid State Electronic Devices, Third Edition, Prentice-Hall International, Canada, 1990, Chapter 6. 66. H. T. Soh and C. F. Quate, Appl. Phys. Lett., 75 (1999) 627. 67. K. G. Ong and C. A. Grimes, Smart Mater. Struct., 9 (2000) 421. 68. A. Kindlund and I. Lundstrom, Sensors and Actuators, 3 (1982/83) 63. 69. A. W. Czanderna and T. M. Thomas, J. Vac. Sci. Technol. A, 5 (1987) 2412. 70. G. Z. Sauerbrey, J. Physik, 155 (1959) 206. 71. W. H. King, Jr., Anal. Chem., 36 (1964) 1735. 72. M. T. Gomes, A. C. Duarte, and J. P. Oliveira, Sensors and Actuators, B26-27 (1995) 191. 73. J. Hartmann, J. Auge, and P. Hauptmann, Sensors and Actuators, B19 (1994) 429. 74. K. T. Lee and S. Raghavan, Institute of Environmental Sciences-Proceedings, Annual Technical Meeting 1996 (University of Arizona, May 12-16, 1996) p. 368-373. 75. Y. C. Chao and J. S. Shih, Analytica Chimica Acta, 374 (1998) 39. 76. H. M. Lin, B.Y. Wei, S. F. Pan, S. C. Tsai and, and H. F. Lin, J. Nanoparticle Research, June, 2003 (in print). 77. J. Wei, J. Pillion and C. Hoang, J. Inst. Environ. Science, 40 (1997) 43. 78. A. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces, Sixth Edition, John Wiley and Sons, New York, 1997, p. 617-618. 79. C. M. Yang, K. Kaneko, M. Yudasaka, and S. Iijima, Physica B, 323 (2002) 140. 80. A. Fujiwara, K. Ishii, H. Suematsu, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, Chem. Phy. Lett., 336 (2001) 205. 81. S. E. Weber, S. Talapatra, C. Journet, A. J. Zambano, and A. D. Migone, Phys. Rev. B, 61 (2000) 13150. 82. J. Oscik, in: I. L. Cooper (Ed.), Adsorption, John Wiley and Sons, New York, 1982, p. 28. 83. S. R. Morrison, in: The Chemical Physice of Surfaces, Second Edition, Plenum Press, New York, 1977, p. 110-111. 84. G. Vidali, G. Ihm, H. Y. Kim, and M. W. Cole, Surf. Sci. Rep., 12 (1991) 133. 85. A. J. Zambano, S. Talapatra, and A. D. Migone, Phys. Rev., B 64 (2001) 075415. 86. B. Y. Wei, M. C. Hsu, Y. S. Yang, S. H. Chien, and H. M. Lin, Mater. Chem. & Phys., June, 2003 (in print). 87. D. H. Yoo, G. H. Rue, J. Y. Seo, Y. H. Hwang, M. H. W. Chan and H. K. Kim, J. Phys. Chem. B, 106 (2002) 9000. 88. W. Göpel, T. A. Jones, M. Kleitz, J. Lundström, and T. Seiyama: Sensors-A comprehensive Survey, Volume 2, Chemical and Biochemical Sensors, Part I (VCH, New York, 1991) p. 21. 89.W. H. Schackleford and G. G. Guilbault, Anal. Chim. Acta, 73 (1974) 383. 90. A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodr´ýguez-Mac´ýas, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, Appl. Phys. A 67 (1998) 29. 91. S. C. Chang, J. Vac. Sci. Technol., 17 (1980) 366. 92. M. J. Duck and R. L. Nelson, J. Chem. Soc. Faraday Trans. I., 70 (1974) 436. 93. A. J. Tench and T. Lawson, Phy. Chem. Lett., 8 (1971) 177. 94. N. Barsan, M. Schweizer-Berberich, and W. Göpel, Fresenius J Anal Chem. 365 (1999) 287. 95. X. Jiaqianq, P. Qingyi, S. Yuan, and T. Zhizhuang, Sensors and Actuators B, 66 (2000) 277. 96. N. Yamamoto, S. Tonomura, T. Matsuoka, and H. Tsubomura, Surface Science, 92 (1980) 400. 97. M. S. Lee and J. U. Meyer, Sensors and Actuators B, 68 (2000) 293. 98. U. Herr, J. Jing, R. Birringer, U. Gonser, and H. Gleiter, APPL. Phy. Lett., 50 (1987) 472. 99. Y. Shimizu and M. Egashira, MRS Bulletin, 24 (1999) 18. 100. Z. Lukacs, M. Sinz, G. Staikov, W. J . Lorenz, G. Baier, and A. Voqel, Solid State Ionics, 68 (1994 ) 93. 101. U.S Patent 5,448,906, Ambient Temperature Gas Sensor, 1995. 102. I. Sayago, J. Gutierrez, L. Ares, J. I. Robla, M. C. Horrillo, J. Getino, J. Rino, and J. A. Agapito, Sensor and Actuators B, 26 (1995) 19. 103. C. Cantalini, M. Pelino, H. T. Sun, M. Faccio, S. Santucci, L. Lozzi, and M. Passacantando, Sensor and Actuators B, 35 (1996) 112. 104. L. E. Depero, M. Ferroni, V. Guidi, G. Marca, G. Martinelli, P. Nelli, L. Sangaletti, and G. Sberveglieri, Sensor and Actuators B, 35 (1996) 381. 105. H. Low, G. Sulz, M. Lacher, G. Kuhner, G. Uptmoor, H. Reiter, and K. Steiner, Sensor and Actuators B, 9 (1992) 215. 106. A. Chiorino, G. Ghiotti, M. C. Carotta, and G. Martinelli, Sensor and Actuators B, 47 (1998) 205. 107. E.P Patent 0114310, Carbon monoxide sensing element and process for manufacturing it, 1984. 108. U.S Patent 4,535,315, Alkane gas sensor comprising tin oxide semiconductor with large surface area, 1985. 109. U.S Patent 5,185,130, Solid-state sensor for determining hydrogen and/or NOx concentration and the method for its preparation, 1993. 110. U.S Patent 5,273,779, Method of fabricating a gas sensor and the product fabricated thereby, 1993. 111. U.S Patent 5,427,740, Tin oxide gas sensor, 1995. 112. U.S Patent 5,624,640, Sensor for detecting nitrogen oxide, 1997. 113. U.S Patent 6,059,937, Sensor having tin oxide thin film for detecting methane gas and propane gas, and process for manufacturing thereof, 2000. 114. U.S Patent 6,134,946, Nano-crystalline porous tin oxide film for carbon monoxide sensing, 2000. 115. N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, Surf. Sci., 86 (1979) 335. 116. K. Ihokura, New Mater. Proc., 1 (1981) 43. 117. P. G. Su, personal communication, 2003. 118. A. Kunimoto, N. Abe, H. Uchida, and T. Katsube, Sensors and Actuators B, 65 (2000) 122. 119. W. Zhang, H. Uchida, T. Katsube, T. Nakatsubo, and Y. Nishioka, Sensors and Actuators B, 49 (1998) 58. 120. W. Zhang, E. A. de Vasconcelos, H. Uchida, T. Katsube, T. Nakatsubo, and Y. Nishioka, Sensors and Actuators B, 65 (2000) 154.
|