(3.234.221.162) 您好!臺灣時間:2021/04/14 05:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張育暢
研究生(外文):Yu-Chang Chang
論文名稱:具小腦模型之永磁式線性同步馬達控制器之設計與實現
論文名稱(外文):DESIGN AND IMPLEMENTATION OF CMAC-BASED CONTROLLER FOR PERMANENT MAGNET LINEAR SYNCHRONOUS MOTOR DRIVE
指導教授:洪達雄
指導教授(外文):Ta-Hsiung Hung
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:61
中文關鍵詞:小腦模型控制器永磁式線性同步馬達二軸理論
外文關鍵詞:cerebellar-model-articulation-controllerpermanent magnet linear synchronous motortwo-axis theorem
相關次數:
  • 被引用被引用:4
  • 點閱點閱:135
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
過去直流馬達一直是產業界的主流,主要是因為直流馬達在結構上解耦,因此無論是對其做速度或是位置控制,均容易得到一不錯的響應結果。交流馬達的性能無法跟直流馬達相比。但70年代以後,由於功率半導體技術、微處理器、以及馬達控制理論與電腦輔助設計技術的蓬勃發展,使得交流馬達已能漸漸取代直流馬達成為工業應用上高性能需求的主流。另外若要直接透過旋轉式交流馬達藉由齒輪、皮帶和滾珠螺桿等傳動機構來實現直線運動的話,常會因為交流旋轉馬達的定位機構在定位精度上不易提升,而造成對於效率、速度及可靠性等響應性能的影響。反之,若直接使用線性馬達在控制領域的直線運動上,便可直接獲得像是高速、高精確度、高推力以及高可靠度等難以由交流旋轉機構間接輸出直線運動時所附帶的優點。
在本篇論文中,我們提出一輔以小腦模型之積分-比例控制器對永磁式線性同步馬達做位置控制,其系統之動態模型參數可藉著響應曲線被估測,而傳統控制器的參數可依照其對應迴路的波德圖被設計,至此馬達位置的控制可以得到初步被接受的結果。接著在傳統控制迴路中加入小腦模型控制器,再依據系統的追蹤誤差訓練其相關聯之權重值,如此重複訓練以減少系統的追蹤誤差。為了分析比較所提控制器的優劣,在論文中,擬以傳統控制器和所提之智慧型控制器做效應上的比較。
DC motor is always the main stream in industrial circles, and the most important reason is that position finding of DC motor is good. Performance of AC motor compares poorly with DC counterpart at that time. After 70s century, due to develop in power semiconductor devices, microprocessors, converter design technology, and control theory have enabled AC motor take the replace of DC motor, and become the main stream in industrial applications. Besides, if we realize the linear motion by a rotary motor with suitable mechanisms like gears, belts and screws etc., the effectiveness, velocity and reliability are quickly affected by position finding precision of motor. On the other hand, the use of linear motors for direct linear motion possesses some advantages, as high speed, high precision, high actuates force and high reliability etc.
In this thesis, we propose a position control for permanent magnet linear synchronous motor (PMLSM) with a cerebellar model articulation controller (CMAC) and conventional controller. The parameters of system dynamic model are estimated by the response curve, and the parameters’ design of conventional controllers is according to the Bode diagram of the corresponding loop, so far position control of motor can derive tolerable solutions. Then the CMAC controller, whose connective weights are iteratively trained on-line according to the tracking error of the system, is added-onto the traditional control loop to reduce tracking error of the PMLSM. Finally, to analyze the performance of the controller, the proposed controller is used to be compared with conventional controller.
ABSTRACT (IN CHINESE) I
ABSTRACT (IN ENGLISH) II
ACKNOWLEDGEMENT III
CONTENTS IV
LIST OF FIGURES VI
LIST OF TABLES X
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 THE FUNDAMENTAL CONCEPTS OF PERMANENT MAGNET LINEAR SYNCHRONOUS MOTOR 5
2.1 Introduction 5
2.2 Coordinate Transformation 9
2.2.1 Stationary reference frame 10
2.2.2 Arbitrary reference frame 11
2.3 Mathematical Model of Permanent Magnet Linear Synchronous Motor 12
2.4 Conventional Control Strategy 15
2.4.1 Decoupling 15
2.4.2 The parameters design of controllers 17
2.4.2.1 Current control loop 17
2.4.2.2 Velocity control loop 19
2.4.2.3 Position control loop 21
CHAPTER 3 CONVENTIONAL CMAC 24
3.1 Introduction of CMAC 24
3.2 The Mapping and Learning of CMAC 24
3.2.1 Mapping and learning of 1-dimension CMAC 25
3.2.2 Mapping and learning of 2-dimension CMAC '29
3.3 CMAC in Control Application 32
CHAPTER 4 SIMULATION 36
4.1 Introduction of Hardware Structures 36
4.2 Simulation Results 43
CHAPTER 5 CONCLUSIONS 58
REFERENCES 59
[1] S. A. Nasar and I. Boldea, Linear Electric Motors: Theory, Design, and Practical Applications, New Jersey, Prentice-Hall, 1987.
[2] I. Boldea and S.A. Nasar, Linear Electric Actuators and Generators, London, Cambridge University Press, 1997.
[3] T. Egami and T. Tsuchiya, “Disturbance suppression control with preview action of linear DC brushless motor,” IEEE Transactions on Industrial Electronics, vol. 42, pp.494-500, October, 1995.
[4] M. Sanada, S. Morimoto, and Y. Takeda, “Interior permanent magnet linear synchronous motor for high-performance drives,” IEEE Transaction on Industry Applications, vol. 33, pp. 966-972, July/August, 1997.
[5] Q. Guo, L. Wang, and R. Luo, “Robust fuzzy variable structure control of PMLSM servo system,” Proceedings of IEEE International Conference on Intelligent Processing System, October, 1997, pp.675-679.
[6] F. J. Lin, C. H. Lin, and C. M. Hong, “Robust control of linear synchronous motor servodrive using disturbance observer and recurrent neural network compensator,” IEE Proceedings-Electric Power Applications, vol. 147, pp.263-272, July, 2000.
[7] F. J. Lin, “Real-time IP position controller design with torque feed-forward control for PM synchronous motor,” IEEE Transactions on Industrial Electronics., vol. 44, pp.398-407, June, 1997.
[8] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of Control, Signals, and Systems, vol. 2, pp303-314, 1989.
[9] W. T. Miller, R. S. Sutton, and P. Werbos, Neural Networks for Control, MIT Press: Cambridge, MA, 1990.
[10] C. H. Lin, W. D. Chou, and F. J. Lin, “Adaptive hybrid control using a recurrent neural network for a linear synchronous motor servo-drive system,” IEE Proceedings-Control Theory and Applications, vol. 148, pp.156-168, March, 2001.
[11] F. J. Lin and C. H. Lin, “On-line gain tuning RFNN for linear synchronous,” Power Electronics Specialists Conference, vol. 2, June, 2001, pp.766-771.
[12] F. J. Lin and H. P. Chen, “A PM synchronous servo motor drive with an on-line trained fuzzy neural network controller,” IEEE Transactions on Energy Conversion, vol. 13, December, 1998.
[13] R. J. Wai and F. J. Lin, “Fuzzy neural network sliding-mode position controller for induction servo motor drive,” IEE Proceedings-Electric Power Applications, vol. 146, May, 1999.
[14] F. J. Lin and R. J. Wai, “Hybrid control using recurrent fuzzy neural network for linear-induction motor servo drive,” IEEE Transactions on fuzzy systems, vol. 9, February, 2001.
[15] J. S. Albus, “A new approach to manipulator control: the cerebellar model articulation controller (CMAC),” Journal of Dynamic Systems, Measurement, and Control - Transactions of the ASME, vol.97, pp.220-227, September, 1975.
[16] J. S. Albus, “Data storage in the cerebellar model articulation controller (CMAC),” Journal of Dynamic Systems, Measurement, and Control - Transactions of the ASME, vol.97, pp.228-233, September, 1975.
[17] W. T. Miller, F. H. Glanz, and L. G. Kragt, “Application of a general learning algorithm to the control of robotics manipulators,” International Journal of Robotics Research, vol. 6, pp.84-98, 1987.
[18] F. H. Glanz, W. T. Miller, and L. G. Kraft, “An overview of the CMAC neural network,” Proceedings of 1991 IEEE Neural Networks for Ocean Engineering, August, 1991, pp.301-308.
[19] W. T. Miller, R. P. Hewes, F. H. Glanz, and L.G. Kraft, “Real-time dynamic control of an industrial manipulator using a neural-network-based learning control,” IEEE Transactions on Robots and Automation, vol.6, pp.1-9, February, 1990.
[20] W. T. Miller, “Real time application of neural network for Sensor-Base control of robots with vision,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 19, pp.825-831, July/August, 1989.
[21] L. G. Kraft and D. P. Campagna, “A comparison between CMAC neural network control and two traditional adaptive control systems,” IEEE Control Systems Magazine, pp.36-43, 1990.
[22] M. Brown, C. J. Harris, and P. C. Parks, “The interpolation capabilities of the Binary CMAC,” Neural Networks, vol. 6, pp.429-440, 1993.
[23] P. C. Parks and J. Militzer, “A Comparison of five algorithms for the training of CMAC memories for learning control systems,” Automatica, vol. 28, pp.1027-1035, 1992.
[24] S. A. Nasar and I. Boldea, Linear motion electric machines, New Jersey: Prentica-Hall Inc., 1976.
[25] T. C. Lin, “Position control of a linear brushless DC motor drive,” Master Thesis, National Tsing Hua University, June, 2000.
[26] 劉昌煥著, 交流電機控制:向量控制與直接轉矩控制原理, 東華書局, 2001.
[27] C. S. Lin and C. T. Chiang, “Learning convergence of CMAC technique,” IEEE Transactions on Neural Networks, vol. 8, pp. 1281-1291, November, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔