跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/18 08:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張璁文
研究生(外文):Chung-Wen Chang
論文名稱:應用以微處理機為基礎及具有強健性設計的分散式控制於機器腳的軌跡追蹤
論文名稱(外文):Trajectory Tracking of Legged Robot Using Microprocessor-Based Decentralized Control with Robust Designs
指導教授:黃志良黃志良引用關係
指導教授(外文):Chih-Lyang Hwang
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:51
中文關鍵詞:機器腳微處理機分散式控制滑動模式控制dead-beat 控制H 最佳化
外文關鍵詞:Legged robotMicroprocessorDecentralized controlSliding-mode controlDead-beat controlH-optimization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文主要是應用以微處理機為基礎的分散式滑動追蹤控制於兩個自由度的機器腳。一般而言,機器腳的動態是互相影響的。為了設計簡化的控制器,分散式控制器是第一考量。在沒有負載的情況下,各軸的線性分散式系統分別用遞歸的最小平方參數評估法求得。由各軸動態的互相影響及模組化誤差產生的輸出干擾會造成系統不良的影響。在這樣的情況下,輸出干擾和切換平面間權重敏感性的最大值極小最佳化將被發展出來消除輸出干擾的影響。此外,選擇適合的權重函式可以消除相對應已知的輸出干擾。此即是強健性設計的第一特色“最佳化及抵抗的強健性”。另外設計切換模式控制來進一步改善系統的效能。這是目的控制在強健性設計的第二特色“提高強健性”。本篇論文提到的微處理器是使用美國德州儀器公司所生產的TMS320F240。簡而言之,本論文的目的控制設計是有效的、簡單的以及實際的。最後,用機器腳的實驗去評估所使用之方法的有效性。
In this thesis, a microprocessor-based decentralized sliding-mode tracking control is applied to a legged robot with two-degree-of-freedom. In general, the dynamics of a robot leg is coupled. For a simplified controller design, a decentralized control is first considered. Under no external load, a linear discrete-time dynamic model for every link is individually achieved by the recursive least-squares parameter estimation. An output disturbance caused by the interaction and modeling error deteriorates the system performance. In this situation, a minimax optimization of weighted sensitivity between output disturbance and switching surface is obtained to attenuate the effect of output disturbance. Moreover, a suitable selection of weighted function can reject the corresponding output disturbance of known mode. It is the “optimal and rejected robustness” that is the first characteristic of the robustness design. For further improving the system performance, a switching control is designed. This is the second feature for the robustness design of the proposed control, which is the “improved robustness”. The microprocessor of this thesis is TMSC320F240 of Texas Instruments (TI). In brief, the proposed control scheme is effective, simple and practical. Finally, the experiments for legged robot are arranged to evaluate the usefulness of the proposed method.
ABSTRACT----------------------------------------------------- i
摘要--------------------------------------------------------- ii
ACKNOWLEDGMENT-----------------------------------------------iii
CONTENTS----------------------------------------------------- iv
LIST OF FIGURES AND TABLE------------------------------------ v
Chapter 1 INTRODUCTION-------------------------------------- 1
Chapter 2 TWO-DEGREE-OF-FREEDOM ROBOT LEG------------------- 3
2.1 Experimental Setup------------------------------- 3
2.2 Mathematical Notation---------------------------- 5
2.3 Modeling----------------------------------------- 5
2.4 Problem Statement-------------------------------- 7
Chapter 3 CONTROLLER DESIGN--------------------------------- 9
3.1 Dead-Beat to Switching Surface for Nominal
Subsystem---------------------------------------- 9
3.2 Minimax Optimization of Weighted Sensitivity
Function-----------------------------------------10
3.3 Switching Control for Enhanced Robustness--------12
Chapter 4 EXPERIMENTAL RESULTS------------------------------15
Chapter 5 CONCLUSIONS---------------------------------------18
REFERENCES---------------------------------------------------48
APPENDIX-----------------------------------------------------50
[1] T. T. Lee and C. L. Shih, “A study of the gait control of a quadruped walking vehicle,” IEEE Trans. Robot. & Automat., vol. 2, no. 2, pp. 61-69, 1986.
[2] J. C. Hillel, R. D. Beer, R. D. Quinn and K. S. Espenschied, “Robustness of a distributed neural network controllers for locomotion in a hexapod robot,” IEEE Trans. Robot. & Automat., vol. 8, no. 3, pp. 293-302, 1992.
[3] E. Celaya and J. M. Porta, “A control structure for the locomotion of a legged robot on difficult terrain,” IEEE Trans. Robot. & Automat. Mag., pp. 43-51, 1998.
[4] G. A. Pratt, “Legged robots at MIT: What’s new since Raibert,” IEEE Trans. Robot. & Automat. Mag., pp. 15-19, Sep. 2000.
[5] J. Muller, M. Schneider and M. Hiller, “Modeling, simulation, and modeled-based control of the walking machine ALDURO,” IEEE/ASME Trans. Mechatron., vol. 5, no. 2, pp. 142-152, 2000.
[6] X. Chen, K. Watanabe, K. Kiguchi and K. Izumi, “An ART-based fuzzy controller for the adaptive navigation of a quadruped robot,” IEEE/ASME Trans. Mechatron., vol. 7, no. 3, pp. 318-328, 2002.
[7] D. D. Sijak, Large-Scale Dynamic Systems: Stability and Structure. North-Holland, 1978.
[8] W. S. Chan and C. A. Desoer, “Eigenvalue assignment and stabilization of interconnected systems using local feedback,” IEEE Trans. Automat. Contr., vol. 25, pp. 106-107, 1980.
[9] Y. H. Chen, “ Decentralized robust control system design for large-scale uncertain systems,” Int. J. Contr., vol. 111, pp. 1195-1205, 1988.
[10] K. J. Astrom and B. Wittenmark, Computer-Controlled Systems--- Theory and Design, Prentice-Hall Inc., 3rd Ed., 1997.
[11] G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and Control, Prentice-Hall Co., 1984.
[12] C. L. Hwang, “Design of servo controller via the sliding mode techniques,” IEE Proc.-D, Control Theory and Application, vol.139, no. 5, pp. 439-446, 1992.
[13] K. D. Young, V. I. Utkin and “A control Engineer’s guide to sliding mode control,” IEEE Trans. Contr. Syst. Technol., vol. 7, no. 3, pp. 328-342, 1999.
[14] K. Furuta and Y. Pan, “Variable structure control with sliding sector,” Automatica, vol. 36, no. 3, pp. 211-228, 2000.
[15] W. C. Su and C. C. Tsai, “Discrete-time VSS temperature control for a plastic extrusion process with water cooling systems,” IEEE Trans. Contr. Syst. Technol., vol. 9, no. 4, pp. 618-623, 2001.
[16] C. L. Hwang, “Robust discrete variable structure control with finite-time approach to switching surface,” IFAC, Int. J. of Automatica, vol. 38, no. 1, pp. 167-175, 2002.
[17] H. K. Khalil, Nonlinear Systems. Prentice-Hall, Inc. 2nd Edition, 1996.
[18] A. Rubaai, D. Ricketts and M. D. Kankam, “Laboratory implementation of a microprocessor-based fuzzy logic tracking controllers for motion controls and derives,” IEEE Trans. Ind. Applica., vol. 38, no. 2, pp. 448-456, 2002.
[19] TMS320C240, TMS320F240 DSP Controllers, SPRS042B-October 1996 Revised, May 1998, Texas Instruments incorporated company.
[20] Code Composer User’s Guide, SPRU296A-October 1999, Texas Instruments incorporated company.
[21] B. A. Francis, A Course in Control Theory. Lecture Notes in Control and Information Sciences, Springer-Verlag Berlin, Heidelberg, 1987.
[22] C. L. Hwang and B. S. Chen, “Adaptive control of optimal model matching in -norm space,” IEE Proc. D, Contr. Theory, Applicat., vol. 135, no. 4, 295-301, 1988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊