(3.237.20.246) 您好!臺灣時間:2021/04/15 09:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳德洋
研究生(外文):De-Yang Wu
論文名稱:散熱座應用於水冷系統之效能評估
論文名稱(外文):Performance Evaluation of the Heat Sink in a Water Cooling System
指導教授:郭鴻森李基禎李基禎引用關係
指導教授(外文):Prof. Hong-Sen KouProf. Ji-Jen Lee
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:186
中文關鍵詞:水冷散熱座
外文關鍵詞:Water CoolingHeat Sink
相關次數:
  • 被引用被引用:20
  • 點閱點閱:683
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:157
  • 收藏至我的研究室書目清單書目收藏:0
近年來,電子設備不斷在縮小化及高效能上精進,促使電子散熱裝置日趨重要,進而發展許多不同形式散熱裝置,未來更將朝向水冷方面發展。因此,本論文的目的在設計一個高效率的水冷式散熱模組,且此散熱座的體積較一般散熱座小。文中也配合數值模擬軟體來設計散熱座的外觀,並以實驗作基本的驗證。
本研究主要針對三個重點進行:一是鰭片式與N型式流道散熱座之效能量測與分析,並分別針對此兩種型式之各種參數進行探討。二是設計新型之N型流道散熱座,並利用套裝軟體FLOTHERM模擬其散熱性能,以得到較佳之設計,並實際加工出散熱座,且量測其熱阻值做比較。三是利用散熱座配合熱交換器,來進行整個封閉系統的測試,在吸熱等於放熱的能量平衡狀態時,量測其溫度變化與系統之熱阻值。
模擬結果發現,N型流道中,擋板切割間隙的設計,會影響散熱座的流場分佈,故此設計主要為了使流場更均勻,並能夠吸收足夠的熱量後再帶出,以提高散熱座整體的效能。以本論文兩個擋板的實例可發現 :入口方的擋板有間隙,出口方的擋板沒有間隙,經由流場分佈的結果,可得到最小的熱阻值。最後將實驗的數據和數值模擬做比較,發現兩者有誤差存在,可藉由加強壓力與散熱膏兩方面來使實驗更接近模擬結果。
另外,實驗與數值模擬結果顯示,不斷提昇工作流體的流量,熱阻值雖都有下降情況,但減緩會趨近於一定值。因此,選擇適當流量來節省沈水馬達所輸出的功率,才符合經濟效益。
In recent years, the electronic equipment is continuously developing in shrinking its size and turning high performance. This trend urges the heat sink of electronics device to become gradually important, that will also develop toward the aspect of water-cooling system in the future. Therefore, the purpose of this thesis is designing a high-efficiency water-cooling module. And the physical volume of this thermal module is expected to be reduced to a smaller size. In the text, the numerical simulation by a software package is executed to design the appearance of heat sink. Also, experimental results are obtained for comparison to confirm its basic identification.
The present study mainly aims at three points to carry on. 1.) The measurement and analysis of the fin type heat sink and N-type heat sink. The parameters of these two kinds of pattern are explored to carry on the performance, respectively. 2.) To design a new heat sink and make use of the FLOTHERM software package to simulate and to get the best performance. Then, machined this designed heat sink and then measured its thermal resistance. 3.) Combining this heat sink with a heat exchanger, the whole testing of water-cooling system was carried on. When this close system reaches the energy balance, the absorption of heat is equal to the release of heat, measurements are proceeded to obtain the data of temperature.
The simulation results show that the gap between the block boards in the N-type flow channel will affect the flow field of the heat sink. Hence, the main consideration of a good design is to make the flow field distribution more even. Therefore, the flow can take the enough heat energy out before leaving the heat sink. It is found that for the block near the inlet region that has some gaps and for the block near the outlet region that has no open gap can get the least thermal resistance. Finally, the comparison between the experimental data and numerical simulation indicates that both have the error margin. It is believed that the results from the experiment can be even near to that of the numerical simulation by enhancing the pressure force and also spreading thermal grease to reduce the thermal contact resistance.
In addition, both of experimental results and numerical simulation indicate that when promoting the flow discharge of the working fluid continuously, the thermal resistance will descend but finally it will decelerate to tend near a constant value. Therefore, choosing the appropriate discharge flow rate can save the pumping power and match the economical benefit.
Chinese Abstract………………………………………………………I
English Abstract………………………………………………………II
Acknowledgement………………………………………………………IV
Table of Contents……………………………………………………V
List of Figures……………………………………………………VIII
List of Tables…………………………………………………………XII
Nomenclature……………………………………………………………XVI
CHAPTER 1 INTRODUCTION…………………………………………………1
1-1 Background of Study………………………………1
1-2 Motivation...………………………………………2
1-3 Classification of Water Cooling Heat Sink……5
1-4 Literature Review……………………………………6
1-4-1 Literature Review Aspect of Numerical Simulation…6
1-4-2 Literature Review Aspect of Experiment Observation…9
1-5 Research Purpose……………………………………11
CHAPTER 2 NUMERICAL METHOD……………………………………………13
2-1 Constructing the Physical Model…………………14
2-2 Grid……………………………………………………16
2-2-1 Grid Spacing…………………………………16
2-3 The Solution Method…………………………………17
2-3-1 Summary of the Algorithm Used……………18
2-4 Finite Volume Equation……………………………19
2-5 Turbulence Model……………………………………23
2-6 Convergence Criteria………………………………23
2-7 Boundary Condition…………………………………24
CHAPTER 3 EXPERIMENTAL APPARATUS AND PROCEDURE ………………26
3-1 Experimental Apparatus……………………………26
3-2 Procedures of Experimental Measurement………29
3-3 The Manufacturing Method of Heat Sink…………30
3-4 Define the Efficacy of Heat Sink………………32
CHAPTER 4 RESULTS AND DISCUSSION…………………………………35
4-1 Experimental Results for Fin Type Heat Sink :Type A and Type B…………………………………………………………35
4-2 Numerical Simulation Results for Fin Type Heat Sink :Type A and Type B…………………………………………………37
4-3 Experimental Results for Commercial Channel Type Heat Sink: Type C and Type D…………………………………38
4-4 Experimental Results for Channel Type Heat Sink :Type E and Type F……………………………………………………39
4-5 Numerical Simulation Results for Channel Type Heat Sink:Type E and Type F……………………………………………40
4-6 Comparison between the Numerical Simulation and Experimental Observation for Type E and F Heat Sinks…41
4-7 Effects of Thermal Resistance Multiplied with the Volume、Area of the Base, and Weight of a Heat Sink…………42
4-8 Relationship of Thermal Resistance with parameters……43
4-9 Experimental Results for a Closed System Including Type E Heat Sink………………………………………………………43
4-10 Comparison between the Numerical Simulation and Experimental Observation…………………………………44
CHAPTER 5 CONCLUSIONS…………………………………………………46
CHAPTER 6 RECOMMENDATION FOR FUTURE STUDIES…………………48
REFERENCES………………………………………………………………50
APPENDIX…………………………………………………………………53
AUTHOR…………………………………………………………………166
1.陳永樹,「電子構裝概論」,2000。
2.「新一代電子散熱技術研討會」,工業技術研究院能源與資源研究所,民國92年3月18日。
3.解健彬,「高溫?!試試水冷吧!」,行家出手,1999.9,頁169-175。
4.Tunc, G., Bayazitoglu, Y., “Heat Transfer in Rectangular Microchannels,” International Journal of Heat and Mass Transfer, No. 45, pp. 765-773, June, 2002.
5.「2002先進熱導產品設計與加工技術研討會」,金屬工業研究發展中心、工研院能源所、中華民國鍛造協會,民國91年11月25日。
6.Knight, R. W., Hall, D. J., Goodling, J. S., and Jaeger, R. C., Fellow, IEEE, “Heat Sink Optimization with Application to Microchannels,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 15, No. 5, pp. 832-842, October, 1992.
7.Karim, O., Schaeffer, C., Mallet, B., Coyaud, M. and Gimet, E., “Power Module Integrated Cooling Design Using CFD Simulation,” pp. 1925-1930, 2001.
8.Tucker, P. G., “CFD Applied to Electronic System : a Review,” IEEE Transactions on Components, Packaging, and Manufacturing Technology — Part A., vol. 20, No. 4, pp. 518-529, December, 1997.
9.Ryu, J. H., Choi, D. H. and Kim, S. J., “Numerical Optimization of the Thermal Performance of a Microchannel Heat Sink,” International Journal of Heat and Mass Transfer, vol. 45, pp. 2823-2827, 2002.
10.Vogel M. R., “Liquid Cooling Performance for a 3-D Multichip Module and Miniature Heat Sink,” IEEE Transactions on Components, Packaging, and Manufacturing Technology — Part A., vol. 18, No. 1, pp. 68-73, 1995.
11.Gopinath, D., Joshi, Y. K. and Azarm, S., “Multi-Objective Placement Optimization of Power Electronic Devices on Liquid Cooled Heat Sinks,” Seventeenth IEEE SEMI-THERM Symposium, pp. 117-119, 2001.
12.Qu, W., Mudawar, I., “Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink,” International Journal of Heat and Mass Transfer, vol. 45, pp. 2549-2565, 2002.
13.Harms, T. M., Kazmierczak, M. J. and Gerner, F. M., “Developing Convective Heat Transfer in Deep Rectangular Microchannels,” International Journal of Heat and Fluid Flow, vol. 20, pp.149-157, 1999.
14.Karim, O. Crebier, J.-C., Gillot, C. Schaeffer, C. Maller, B. and Gimet, E., “Heat Transfer Coefficient for Water Cooled Heat Sink : Application for Standard Power Modules Cooling at High Temperature,” pp. 1938-1943, 2001.
15.Dickinson, R., Novotny S., Vogel, M. and Dunn, J., “A System Design Approach to Liquid-Cooled Microprocessors,” Inter Society Conference on Thermal Phenomena, pp. 413-420, 2002.
16.Baumann, H., Heinemeyer, P., Staiger, W., Töpfer, M., Unger, K., and Müller, D., “Optimized Cooling Systems for High-Power Semiconductor Devices,” IEEE Transactions on Industrial Electronics, vol. 48, No. 2, pp. 298-306, 2001.
17.Kwon, O., Ames, F. E., “A Velocity and Length Scale Approach to
k-ε Modeling,” Journal of Heat Transfer, pp. 857-863, 1996
18.王啟川,熱交換器設計,初版 (台北市:五南,民國90年),頁313-342。
19.陳堯舜、林正,「如何正確評估散熱片之散熱能力」,電腦與通訊,第50期,1996.6,頁39-47。
20.「Water Cooling System Module for PC, PC用水冷式模組」,福華電腦水冷系統新聞稿,民國91年7月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔