(3.238.206.122) 您好!臺灣時間:2021/04/21 10:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張孫偉
研究生(外文):Suen-woei Chang
論文名稱:質子交換膜燃料電池之流道模擬分析
論文名稱(外文):Simulation and Analysis of Flow Channel in Proton Exchange Membrane Fuel Cell
指導教授:郭鴻森李基禎李基禎引用關係
指導教授(外文):Hong-Sen KouJi-Jen Lee
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:49
中文關鍵詞:燃料電池流場板
外文關鍵詞:Fuel cellflow field plate
相關次數:
  • 被引用被引用:2
  • 點閱點閱:126
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本文主要在探討近年新興的新能源技術-燃料電池之流道設計,以CFD軟體進行模擬分析,試圖設計出具備較均勻之燃料電池流場板。
首先探討反應面積25cm2單電池之流場板,採用傳統型式的筆直流道以改變入口孔徑大小與排列,使整體流場的體積流率具較好的均勻性,取得最好的排列方式後進行加工,並實際進行實驗的操作,所得到的電池性能有達到原先預期之成果。
另外,本文亦探討單一流道中氣體擴散層之孔隙度與流道出口開放率對氣體分佈均勻性之影響,一般認為筆直流道氣體反應時間不足,藉由開放率的改變來提高氣體之使用率,以改善氣體反應時間不足之問題,同時改變不同的流道深度作為搭配,找出最佳的組合,以便日後進行反應面積196cm2單電池之流場板設計。
The principal investigation in this study is flow field design in fuel cell which belongs to a new and developing energy technology recently. The CFD package software was used for simulation and analysis to devise the more uniform flow field of fuel cell.
In the first case, the flow field of single cell which has activating area of 25cm2 is explored. The flow field used CFF (conventional flow field) type. In order to make the flow field more uniform, the scale and arrangement of the inlet bored diameter were changed to obtain more uniform solution. After getting the best arrangement, the flow channel was machined on the graphite plate and then experimental measurement was carried out. It is found that the data of fuel cell efficiency conform to the results that have previously anticipated.
Besides, this study also investigate the influences coming from the porosity of gas diffusion layer and also the open ratio of channel outlet on gases distributed uniformity in a single channel. In general, a straight channel causes that the reaction time was too short for gas. In order to improve the above-mentioned problem, the open ratio at the outlet was set to increase the ratio of reacting gas. The channel depth is also changed to collocate with the open ratio. It is in favor of design the flow field of single cell which had active area of 196cm2 while the best combination is found out.
Table of Contents
中文摘要 I
Abstract II
Table of Contents III
List of Figures V
List of Tables VII
CHAPTER 1 Introduction 1
1.1 Motivation 2
1.2 Other Types of Fuel Cells 2
1.2.1 Alkaline Fuel Cells 2
1.2.2 Phosphoric Acid Fuel Cells 3
1.2.3 Molten Carbonate Fuel Cells 3
1.2.4 Solid Oxide Fuel Cells 4
1.2.5 Direct Methanol Fuel Cells 5
1.3 Flow Field Plate Type 5
1.4 Literature Review 6
CHAPTER 2 Theoretical Analysis of PEMFC 10
2.1 Principal Components in PEMFC 10
2.2 Principles of Operation 12
2.3 Efficiency 12
Chapter 3 Numerical Analysis 14
3.1 The Flow Field of Single Cell which has Activating Area of 14
3.1.1 The Physical Model 14
3.1.2 Fundamental Assumption and Setting 15
3.2 Single Channel of Single Cell which had Active Area of 16
3.2.1 The Physical Model 16
3.2.2 Fundamental Assumption and Setting 16
3.2.3 The loss coefficient of porous media 17
Chapter 4 Results and Discussion 20
4.1 The Design of Flow Field Plate which had Active Area of 20
4.1.1 Results of Simulation 20
4.1.2 The Experimental Results 21
4.2 The Analysis of Uniform Flow Field within Single Channel 22
Chapter 5 Conclusions 23
References 24
References
1. T. V. Nguyen and R. E. White, A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells, The Journal of Electrochemical Society, 140, 2178—2186, 1993.
2. T. V. Nguyen, A Gas Distributor Design for Proton-Exchange-Membrane Fuel Cells, The Journal of Electrochemical Society, 143(5), L103—L105, 1996.
3. A. Kazim, H. T. Liu and P. Forges, Modelling of Performance of PEM Fuel Cell with Conventional and Interdigitated Flow Fields, Journal of Applied Electrochemistry, 29, 1409—1416, 1999.
4. D. Singh, D.M. Lu and N. Djilali, A two-dimensional Analysis of Mass Transport in Proton Exchange Membrane Fuel Cells, International Journal of Engineering Science 37, 431-452, 1999.
5. A. A. Kulikovsky, Numerical Simulation of a New Operational Regime for a Polymer Electrolyte Fuel Cell, Electrochemistry Communications, 460—466, 2001.
6. T. V. Nguyen and M. W. Knobbe, A Liquid Water Management Strategy for PEM Fuel Cell Stacks, Journal of Power Sources 114, 70-79, 2003.
7. L. J. M. J. Blomen and M. N. Mugerwa, Fuel Cell Systems, pp.73-77, Plenum Press, New York, 1993.
8. W. K. Lee, C. H. Ho, J.W. Van Zee and M. Murthy, The Effects of Compression and Gas Diffusion Layers on the Performance of a PEM Fuel Cell, Journal of Power Sources 84, 45—51, 1999.
9. T. V. Nguyen and D. Natarajan, Three-dimensional Effects of Liquid Water Flooding in the Cathode of a PEM Fuel Cell, Journal of Power Sources 115, 66-80, 2003.
10. U.A. Paulus, Z. Veziridis, B. Schnyder, M. Kuhnke, G.G. Scherer and A. Wokaun, Fundamental Investigation of Catalyst Utilization at the Electrode/Solid Polymer Electrolyte Interface Part I. Development of a Model System, Journal of Electroanalytical Chemistry 541, 77-91, 2003.
11. 戴詠哲,在燃料電池中流體流動與質傳現象,九十一年元智大學化學工程學系碩士論文。
12. 吳建龍,不同設計或控制參數對PEM燃料電池性能影響之實驗分析,八十九年國立中山大學機械工程研究所碩士論文。
13. 台灣燃料電池資訊網,http://www.tfci.org.tw/
14. 元智大學燃料電池研究中心,http://www.fuelcells.org.tw/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔