跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/20 14:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭素碧
研究生(外文):Su-Pi Kuo
論文名稱:應用在低溫一氧化氮選擇性觸媒還原反應之CuO-V2O5/AC觸媒研究
論文名稱(外文):CuO-V2O5 / AC CATALYSTS FOR SELECTIVE CATALYTIC REDUCTION OF NO IN LOW TEMPERATURE
指導教授:陳炎輝陳炎輝引用關係
指導教授(外文):Ien-Whei Chen
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程研究所碩士在職專班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:81
中文關鍵詞:一氧化氮活性碳選擇性觸媒還原反應
外文關鍵詞:NOActivated Carbonselective catalytic reduction (SCR)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究在開發具高效能去除一氧化氮之活性碳載體銅釩氧化物觸媒。觸媒的製備是以活性碳(Activated Carbon)當載體,分別含浸不同重量百分比之V2O5與5%CuO於載體上,再經由523 K高溫煅燒後形成。SCR觸媒特性是以熱重量分析儀(TGA)、表面積分析儀(BET)、感應耦合電漿質譜儀(ICP)、程溫還原儀(TPR)、X-ray繞射儀(XRD)以及掃描式電子顯微鏡(SEM)等儀器進行試驗。選擇性觸媒還原(SCR)反應是在固定床反應器中進行,其在含NO之模擬煙道氣通過反應器,並以氨氣為還原劑,將NO還原為N2,來測試各組觸媒所含V2O5、CuO及AC載體之組成對其觸媒活性的影響,並尋找SCR反應用觸媒之最佳組成。
由觸媒特性測試結果發現,2 wt%V2O5-5 wt% CuO/AC 觸媒具有最大BET表面積;含2 wt%V2O5與5 wt% CuO之CuO-V2O5/AC觸媒在溫度473 K 左右可達100%之轉化率為最佳之組成。
This study is concentrated on developing an activated carbon (AC) carrier Cu-V oxidization catalyst for the selective catalytic reduction (SCR) that can perform the de-NOx task with high performance. The catalyst is made by using activated carbon (AC) as the carrier, sunken into V2O5 and 5 wt% CuO solutions with various percent of concentration in weight. Then flare the support toward the temperature of 523 K forming the catalyst thereof. The characters of SCR catalyst are tested by the specific detectors and instruments including TGA, BET, Induced Coupling Plasma (ICP), TPR, X-ray diffraction detector (XRD) as well as scanned type electron microscope (SEM), etc. The deoxidizing reaction reacted in the SCR is proceeded in a fixed-bed reactor. Letting a simulated flue gas that contains NO composition pass through groups of various catalysts containing different V2O5 and 5 wt% CuO concentrations. During the experiment we select ammonia (NH3) gas to be the deoxidizing reactant, reducing the NO contained in the reacting gas into N2, and we can test the effectiveness regarding the contain of V2O5 and CuO concentrations versus the AC support in different test catalysts, figuring out the actual effort of V2O5 and CuO concentration toward the activation of catalyst. And we hereby look for the best combination of catalyst in SCR reaction .
From the test of catalyst characters we have found the best conversion ratio 5 wt%CuO-2 wt% V2O5 /AC can provide the maximum BET surface area, and the solutions of 2 wt% V2O5 and 5 wt% CuO to make a CuO-V2O5/AC catalyst reacting at about 423 K, will compose a best reactant proceeding with a NO conversion ration of almost 100%.
TABLE OF CONTENTS
ACKNOWLEDGMENT iii
ABSTRACT (English) iv
ABSTRACT (Chinese) vi
TABLE OF CONTENTS viii
LIST OF TABLES x
LIST OF FIGURES xi
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE 6
2.1 NOx and Environmental 6
2.2 NOx Information 8
2.3 NOx treatment techniques and SCR catalyst 11
2.4 Carbon Material 20
2.4.1 Catalytic NO reduction by Carbon material 20
2.5 Activated Carbon 22
2.5.1 Shaping the special structure of activated carbon 22
2.5.2 Small opening of activated carbon 24
2.5.3 Improving surface of activated carbon 26
2.5.4 Catalytic reduction of NO by catalyst of activated carbon supporting metals 26
2.6 Mechanism 29
2.6.1 Effect of O2 32
2.7 Selectivity 35
CHAPTER 3 EXPERIMENTAL 36
3.1 Catalyst Preparation 36
3.2 Characterization of Catalysts 37
3.3 Catalyst characterization 38
3.3.1 Thermogravimetric Analyzer (TGA) 39
3.3.2 Brunauer-Emmett-Teller ( BET ) 39
3.3.3 Inductively Coupled Plasma (ICP) 41
3.3.4 X-ray diffraction Analysis (XRD) 41
3.3.5 Scanning Electron Microscopy ( SEM ) 42
3.3.6 Temperature-Programmed Reduction (TPR) 43
3.3.7 Apparatus and Procedure 47
CHAPTER 4 RESULTS AND DISCUSSION 50
4.1 Thermogravimetric Alysis (TGA) 50
4.2 Brunauer-Emmett-Teller ( BET ) 54
4.3 Inductively Coupled Plasma (ICP) 54
4.4 X-ray diffraction Analysis (XRD) 57
4.5 Scanning Electron Microscopy (SEM) 60
4.6 Temperature-Programmed Reduction (TPR) 69
4.7 Catalytic performance in selective reduction of NO by NH3 71
CHAPTER 5 CONCLUSIONS 75
REFERENCE 77
LIST OF TABLES
Table 2.1 SCR converts nitrogen oxides to nitrogen and water by these reaction 14
Table 2.2 Sulfur trioxide can react with excess ammonia and water vapor to
form ammonia sulfates 17
Table 2.3 Catalysts for Selective Catalytic Reduction 19
Table 2.4 Different kind of activated carbon materials 23
Table 2.5 Comparison of SCR technology of catalyst of activated carbon and metal oxide 30
Table 4.1 BET surface area of catalysts 55
Table 4.2 The composition of CuO-V2O5/AC catalysts 56
LIST OF FIGURES
Fig. 2.1 Emissions of acid rain prescursors 7
Fig. 2.2 Technology of treatment for NOx 12
Fig. 2.3 Principles of SCR De-NOx process 15
Fig. 2.4 Model of the surface structure of V2O5 catalyst. Species I, V+5=O species. Species Π,Vs-OH species 18
Fig. 2.5 Mechanism of NO-NH3 reaction on the V2O5 catalyst. In the
absence of gaseous O2 , the V-OH species is reoxidized to the
V = O species by the bulk V = O 21
Fig. 2.6 Pore size distribution of diffraction type on activated Carbon 25
Fig.3.1 TPR/TPD/TPO apparatus 45
Fig. 3.2 Schematic diagram of temperature-programme reduction apparatus 46
Fig. 3.3 Schematic diagram of selective catalytic reduction system of
simulated waste-gas 48
Fig.4.1 Thermal stability of AC(MAX-603) and calcined AC (MAX-603T)
at 498 K 52
Fig.4.2 Thermal stability of AC support at 498 K 53
Fig. 4.3 X-ray diffraction spectra of Cu(5)/AC, Cu(5)-V(5)/AC,
Cu(5)-V(4)/AC, Cu(5)-V(3)/AC, Cu(5)-V(2)/AC, Cu(5)-V(1)/AC and V(5)/AC 59
Fig. 4.4 SEM photograph of V(5) / AC catalyst 61
Fig. 4.5 SEM photograph of Cu(5)-V(1) / AC catalyst 62
Fig. 4.6 SEM photograph of Cu(5)-V(2) / AC catalyst 63
Fig. 4.7 SEM photograph of Cu(5)-V(3) / AC catalyst 64
Fig. 4.8 SEM photograph of Cu(5)-V(4) / AC catalyst 65
Fig. 4.9 SEM photograph of Cu(5)-V(5) / AC catalyst 66
Fig. 4.10 SEM photograph of Cu(5) / AC catalyst 67
Fig. 4.11 TPR profiles of Cu(5)/AC, Cu(5)-V(5)/AC, Cu(5)-V(4)/AC,
Cu(5)-V(3)/AC, Cu(5)-V(2)/AC, Cu(5)-V(1)/AC and V(5)/AC
70
Fig.4.12 NO conversion versus SCR temperature of Cu(5)/AC, Cu(5)-V(5)/AC, Cu(5)-V(4)/AC, Cu(5)-V(3)/AC,
Cu(5)-V(2)/AC, Cu(5)-V(1)/AC and V(5)/AC 72
[1] H. Bosch, F. Janssen, Catal. Today 2 (1987) 369.
[2] F. Nakajima, I. Hamada, Catal. Today 29 (1996) 29.
[3] M.J. Illan-Gomez, E. Raymundo-Pinero, A. Garcia-Garcia, A.Linares-Solano, C. Salinas-Martinez de Lecea, Appl. Catal. B 20 (1999) 267.
[4] W. Charles, Botsford, Chemical Engineering, JULY (2001) 69.
[5] T. Inui, T. Otowa, Y. Takegami, Ind. Eng. Chem. Prod. Res. Dev. 21, (1982) 56.
[6] W. DeGroot, F. Richards, Carbon, G.N. 29 (1991) 179.
[7] H. Teng, Suuberg, Calo, E.M., J.M, Energy & Fuels 6 (1992) 398.
[8] M.J. Illan-Gomez, A. Linares-Solano, Salinas-Martinez de Lecea, C., Calo, J.M., Energy & Fuels 7 (1993) 146.
[9] M.J. Illan-Gomez,A.Linares-Solano, L.R. Radovic, C. alinas-Martinez de Lecea, Calo., J.M., Energy & Fuels 9 (1995) 97.
[10] M.J. Illan-Gomez, A. Linares-Solano, C. Salinas-Martinez de Lecea, Calo., J.M., Energy & Fuels 9 (1995) 104.
[11] M.J. Illan-Gomez, A. Linares-Solano, C. Salinas-Martinez de Lecea, Calo., J.M., Energy & Fuels 9 (1995) 112.
[12] M.J. Illan-Gomez, A. Linares-Solano, C. Salinas-Martinez de Lecea, Calo., J.M., Energy & Fuels 9 (1995) 540.
[13] M.J. Illan-Gomez, A. Linares-Solano, C. Salinas-Martinez de Lecea, Calo., J.M., Energy & Fuels 12 (1998) 1256.
[14] 黃正義,空氣污染:污源與防治 (原著:Kenneth Wark, Cecil F. Warner),1990, p. 38。
[15] C.D. Copper, F.C. Alley, “Air Pollution Control A Design pproach.” Waveland Press, (1990) 451.
[16] H. Bosch, F. Janssen, Catal. Today 2 (1988) 369.
[17] S. Morikawa, H. Yoshida, K. Takahashi, S. Kurita, Chem. Lett. (1981) 251.
[18] M. D. Amiridis, I. E. Wachs, G. Deo, J. M. Jehng, D. S. Kim, J. Catal.
161 (1996) 247.
[19] Y. Li, P. J. Battavio, J. N. Armor, J. Catal. 142 (1993) 561.
[20]廖述賢,“應用在選擇性觸媒還原反應之高性能NH4Br-WO3-V2O5/SiO2-TiO2觸媒研究”,大同工學院化工所碩士論文,1999, p. 16。
[21] A. Nishijima, Y. Kiyozumi, A. Ueno, M. Kurita, H. Hagiwara, T. Sato. N. Todo, Bull. Chem. Soc Jpn. 52 (1979) 897.
[22] N. Todo, A Nishijima, A. Ueno, M. Kurita, H. Hagiwara, T. Sato,
Y. Kiyozumi, Chem. Lett. (1976) 897.
[23] F. Nozaki, K. Yamazaki, T. Inomata, Chem. Lett. (1977) 521.
[24] L. Singoredjo, M. Slagt, J. Van Wees, F. Kapteijn, J. A. Moulijn,
Catal. Today 7 (1990) 157.
[25] L. Singoredjo, R. Korver, F. Kapteijn, J. A. Moulijn, Appl. Catal.
B 1 (1992) 297.
[26] D. Roberge, A. Raj, S. Kaliaguine, D. T. On, S. Iwamoto, T. Inui,
Appl. Catal. B 10 (1996) 237.
[27] H. E. Curry-Hyde, H. Musch, A. Baiker, Appl. Catal. 65 (1990) 211.
[28] S. Kasaoka, E. Sasaoka, H. Iwasaki, Bull. Chem. Soc. Jpn. 62
(1989) 1226.
[29] Z. Zhenping, L. Zhenyu , L. Shoujun, Appl. Catal. B 26 (2000) 25.
[30] F.P. Bore, L. L. Hegedus, T.R. Gouker, K.P. Zak, Controlling
Power-Plant NOX Emissions-Catalytic Technology, Economics, and
Prospects. CHEMTECH. 20 (1990) 312.
[31] C. David Cooper, F. C. Alley Book, of Air Pollution Control: A Design Approach., Waveland Press, 1996, p. 463.
[32] H. Kominami, K. Sawai, M. Hitomi, I. Abe, Y. Kera, Nippon Kagaku Kaishi (1994) 582.
[33] R.N. Smith, J. Swinehart, D. Lesnini., J. Phys. Chem. 63 (1959) 544.
[34] H. Teng, M. A. Serio, M. K. Wojtowicz, R. Bassilakis, P. R. Solomon, Ind. Eng. Chem. Res. 34, (1995), 3102.
[35] E.J. Compobenedetto, T. Murataka, American Power Conference Chicago, Illinois, April 23, (1990) 451 .
[36] I.W. Smith, Fuel 57 (1978) 409.
[37] 賴耿陽 ( 稻垣道夫、大谷杉郎、大谷朝男共著),碳材料碳纖維工學,復漢出版,1986, p. 25。
[38] 徐禮業,國立成功大學化工所博士論文,2003, p. 33。
[39] F. Nozaki, K. Yamazaki, T. Inomata, Chem. Lett. (1977) 521.
[40] F. Kapteijn, A.J.C. Mierop, et al., J. Chem. Soc., Chem. Commun (1984) 1085.
[41] T. Okuhara, K.I. Tanaka, J. Chem., Faraday Trans. 1 (1986) 82.
[42] N. Kakuta, S. Sumiya, et al. Catal. Lett. 11 (1991) 71.
[43] H. Teng, E.M. Suuberg, Ind. Eng. Chem. Res. 32 (1993) 416.
[44]M.J. Illan-Gomez, A. Linares-Solano, L.R. Radovic, C. Salinas-Martinez deLecea, Energy & Fuels 10 (1996) 158.
[45] T. Inui, T. Otowa, Y. Takaegami, Ind. Eng. Chem. Prod. Res. Dev. 21 (1982) 56.
[46] M.J. Illan-Gomez, S. Brandan, A. Linares-Solano, C. Salinas-Martinez de Lecea, Energy & Fuels 10 (1996) 158.
[47] Z.H. Zhu, S. Wang, G.Q. Lu, D.K. Zhang, Catal. Today 53 (1999) 669.
[48] L.M. Gandia, M. Montes, J. Catal. 145 (1994) 276.
[49] Z.H. Zhu, G.Q. Lu, Catal. Today 53 (1999) 669.
[50] T. Wigmans, J.A. Van Doorn, J.A. Moulijn, Fuel 62 (1983) 190.
[51] H.Y. Huang, R.T. Yang, J. Catal. 185 (1999) 286.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊