|
Adrio, J.L., J. Velasco, G. Soler, M. Rodriguez-Saiz, J.L. Barredo, and M.A. Moreno. 2001. Extracellular production of biologically active deacetoxycephalosporin C synthase from Streptomyces clavuligerus in Pichia pastoris. Biotechnol. Bioeng. 75:485-91. Aharonowitz, Y., G. Cohen, and J.F. Martin. 1992. Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. Annu. Rev. Microbiol. 46:461-95. Amabile-Cuevas, C.F. 1993a. Background I. What are antibiotics? In Origin, evolution and spread of antibiotic resistance genes. C.F. Amabile-Cuevas, editor. R. G. Landes Company, Austin. 1-4. Amabile-Cuevas, C.F. 1993b. Background II. How bacteria resist antibiotic action? In Origin, evolution and spread of antibiotic resistance genes. C.F. Amabile-Cuevas, editor. R. G. Landes Company, Austin. 5-14. Amanuma, H., and J.L. Strominger. 1980. Purification and properties of penicillin-binding proteins 5 and 6 from Escherichia coli membranes. J. Biol. Chem. 255:11173-80. Aoki, H., H.-I. Sakai, M. Kohsaka, T. Konomi, J. Hosoda, Y. Kubochi, E. Iguchi, and H. Imanaka. 1976. Nocardicin A, a new monocyclic b-lactam antibiotic I. Discovery, isolation and characterization. The Journal of Antibiotics 29:492-500. Baez-Vasquez, M.A., J.L. Adrio, J.M. Piret, and A.L. Demain. 1999. Further studies on the bioconversion of penicillin G into deacetoxycephalosporin G by resting cells of Streptomyces clavuligerus NP-1. Appl. Biochem. Biotechnol. 81:145-52. Baldwin, J.E., R.M.J. Crabbe, G. Knight, T. Nomoto, C.J. Schofield, and H.-H. Ting. 1987. The enzymatic ring expansion of penicillins to cephalosporins: site chain specificity. Tetrahedron. 43:3009-14. Barber, M.S., B.J. Baker, J.E. Dotzlaf. 1999. Deacetoxycephalosporin C hydroxylase of Streptomyces clavuligerus. Purification, characterization, bifunctionality, and evolutionary implication. J. Biol. Chem. 266:5087-93. Bellido, F., J.-C. Pechere, and R.E.W. Hancock. 1991. Re-evalution of the factors involved in the efficacy of b-lactamase against Enterobacter cloacae. Antimicrob. Agents Chemother. 35:73-78. Berdy, J. 1995. Are actinomycetes exhausted as a source of secondary metabolites? In Proceedings of the ninth international symposium on the biology of the actinomycetes. V.G. Debabov, Y.V. Dudnik, and V.N. Danilenko, editors. All-Russia Scientific Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow. 13-34. Bovenberg, R.A.L., B.P. Koekman, D. Schipper, and A.W. Vollebregt. March 1998. Process for the production of 7-ADCA via expandase activity on penicillin G. U.S. patent 5,731,165. Bowers, R.J., S.E. Jensen, L. Lyubechansky, D.W.S. Westlake, and S. Wolfe. 1984. Enzymatic synthesis of the penicillin and cephalosporin nuclei from an acyclic peptide containing carboxymethylcysteine. Biochem. Biophys. Res. Commun. 120:607-13. Brotzu, G. 1948. Richerche su di un nuovo antibiotico. Lav. Ist. Igiene. Cagliari. 1:1-11. Bryan, L.E., and A.J. Godfrey. 1991. b-Lactam antibiotics, mode of action and bacterial resistance. In Antibiotics in Laboratory Medicine. V. Lorian, editor. Williams and Wilkins, Baltimore. 599-664. Bush, K. 1989. Characterization of b-lactamases. Antimicrib. Agents Chemother. 33:259-63. Bush, K. 1997. Other b-lactams. In Antibiotic and chemotherapy: anti-infective agents and their use in therapy. F. O'Grady, R.G. Finch, H.P. Lambert, and D. Greenwood, editors. Churchill Livingstone, New York. 306-27. Bussiere, D. 1998. Crystal structure of ErmC', an rRNA methyltransferase which mediates antibiotic resistance in bacteria. Biochemistry 37:7103-12. Castro, J.M., P. Liras, J. Cortes, and J.F. Martin. 1985. Regulation of a-aminoadipyl-cysteinyl-valine, isopenicillin N synthetase, isopenicillin N isomerase and deacetoxycephalosporin C synthetase by nitrogen sources in Streptomyces lactamdurans. Appl. Microbiol. Biotechnol. 22:32-40. Chain, E., H.W. Florey, A.D. Gardner, N.G. Heatley, M.A. Jennings, J. Orr-Ewing, and A.G. Sanders. 1940. Penicillin as a chemotherapeutic agent. Lancet. 2:226-28. Chater, K.F. 1990. The improving prospects for yield increase by genetic engineering in antibiotic-production streptomycetes. Bio/Technology 8:115-21. Chin, H.S., J. Sim, and T.S. Sim. 2001. Mutation of N304 to leucine in Streptomyces clavuligerus deacetoxycephalosporin C synthase creates an enzyme with increased penicillin analogue conversion. Biochem. Biophys. Res. Commun. 287:507-13. Chin, H.S., and T.S. Sim. 2002. C-terminus modification of Streptomyces clavuligerus deacetoxycephalosporin C synthase improves catalysis with an expanded substrate specificity. Biochem. Biophys. Res. Commun. 295:55-61. Cho, H., J.L. Adrio, J.M. Luengo, S. Wolfe, S. Ocran, G. Hintermann, J.M. Piret, and A.L. Demain. 1998. Elucidation of conditions allowing conversion of penicillin G and other penicillins to deacetoxycephalosporins by resting cells and extracts of Streptomyces clavuligerus NP1. Proc. Natl. Acad. Sci. USA 95:11544-8. Conder, M.J., P.C. McAda, J.A. Rambosek, and C.D. Reeves. 1996. Bioprocess for prreparing 7-ACA and 7-ADCA. U.S. patent 5,559,005. Cooper, R.D.G. 1993. The enzymes involved in the biosynthesis of penicillins and cephalosporins. Their structure and function. Bioorg. Med. Chem. 1:1-17. Coque, J.J., J.F. Martin, and P. Liras. 1993. Characterization and expression in Streptomyces lividans of cefD and cefE genes from Nocardia lactamdurans: the organization of the cephamycin gene cluster differs from that in Streptomyces clavuligerus. Mol. Gen. Genet. 236:453-8. Cortes, J., J.F. Martin, J.M. Castro, L. Laiz, and P. Liras. 1987. Purification and characterization of a 2-oxoglutarate-linked ATP-independent deacetoxycephalosporin C synthase of Streptomyces lactamdurans. J. Gen. Microbiol. 133:3165-74. Crawford, L., A.M. Stepan, P.C. McAda, J.A. Rambosek, M.J. Conder, V.A. Vinci, and C.D. Reeves. 1995. Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Bio/technology 13:58-62. Danziger, L.H., and S.L. Pendland. 1995. Bacterial resistances to b-lactam antibiotics. Am. J. Health-Sys. Pharm. 52:52-8. Demain, A.L., and M.A. Baez-Vasquez. 2000. Immobilized Streptomyces clavuligerus NP1 cells for biotransformation of penicillin G into deacetoxycephalosporin G. Appl. Biochem. Biotechnol. 87:135-40. Demain, A.L., and R.P. Elander. 1999. The b-lactam antibiotics: past, present, and future. Antonie van Leeuwenhoek. 75:5-19. Dotzlaf, J.E., and W.K. Yeh. 1987. Copurification and characterization of deacetoxycephalosporin C synthetase/hydroxylase from Cephalosporium acremonium. J. Bacteriol. 169:1611-8. Dotzlaf, J.E., and W.K. Yeh. 1989. Purification and properties of deacetoxycephalosporin C synthase from recombinant Escherichia coli and its comparison with the native enzyme purified from Streptomyces clavuligerus. J. Biol. Chem. 264:10219-27. Doyle, R.J., J. Chaloupkaand, and V. Vinter. 1988. Turnover of cell walls in microorganisms. Microbiol. Rev. 52:554-67. Dubus, A., M.D. Lloyd, H.J. Lee, C.J. Schofield, J.E. Baldwin, and J.M. Frere. 2001. Probing the penicillin sidechain selectivity of recombinant deacetoxycephalosporin C synthase. Cell. Mol. Life Sci. 58:835-43. Essack, Y. 2001. The development of b-lactam antibiotics in response to the evolution of b-lactamases. Pharmaceutical research. 18:1391-9. Fernandez, M.J., J.L. Adrio, J.M. Piret, S. Wolfe, S. Ro, and A.L. Demain. 1999. Stimulatory effect of growth in the presence of alcohols on biotransformation of penicillin G into cephalosporin-type antibiotics by resting cells of Streptomyces clavuligerus NP1. Appl. Microbiol. Biotechnol. 52:484-8. Fleming, A. 1929. On the antibacterial action of a Penicillium, with special reference to their use in the isolation of B. influenzae. Brit. J. Exp. Pathol. 10:226-36. French, G.L., and I. Phillips. 1997. Resistance. In Antibiotic and chemotherapy: anti-infective agents and their use in therapy. F. O'Grady, R.G. Finch, H.P. Lambert, and D. Greenwood, editors. Churchill Livingstone, New York. 23-43. Gale, E.F., E. Cundliffe, P.E. Reynolds, M.H. Richmond, and M.J. Waring. 1981. Inhibitors of bacterial and fungal cell wall synthesis. In The molecular basis of antibiotic action. E.F. Gale, E. Cundliffe, P.E. Reynolds, M.H. Richmond, and M.J. Waring, editors. John Wiley and sons, New York. 49-174. Gao, Q., and A.L. Demain. 2001. Improvement in the bioconversion of penicillin G to deacetoxycephalosporin G by elimination of agitation and addition of decane. Appl. Microbiol. Biotechnol. 57:511-3. Gao, Q., and A.L. Demain. 2002. Improvement in the resting-cell bioconversion of penicillin G to deacetoxycephalosporin G by addition of catalase. Lett. Appl. Microbiol. 34:290-2. Garrod, L.P., H.P. Lambert, and F. O'Grady. 1973. Antibiotic and chemotherapy. Churchill Livingstone, London. Grayson, M. 1982. Antibiotics. In Antibiotics, chemotherapeutics, and antibacterial agents for disease control. M. Grayson, editor. John Wiley and Sons, New York. 28-38. Greenwood, D. 1997. Modes of action. In Antibiotic and chemotherapy: anti-infective agents and their use in therapy. F. O'Grady, R.G. Finch, H.P. Lambert, and D. Greenwood, editors. Churchill Livingstone, New York. 10-22. Greenwood, D. 2000. Inhibitors of bacterial cell wall synthesis. In Antimicrobial chemotherapy. D. Greenwood, editor. Oxford university press, New York. 11-28. Hancock, R.E.W. 1997. The bacterial outer membrane as a drug barrier. Trends Microbiol. 5:37-42. Hanes, C.S. 1932. CLX VII. Studies on plant amylases. I. The effect of starch concentration upon the velocity of hydrolysis by the amylase of germinated barley. Biochem. J. 26:1406-21. Heim, J., Y.-Q. Shen, S. Wolfe, and A.L. Demain. 1984. Regulation of isopenicillin N synthetase and deacetoxycephalosporin C synthetase by carbon source during the fermentation of Cephalosporium acremonium. Appl. Microbiol. Biotechnol. 19:232-6. Jensen, S.E., and A.L. Demain. 1994. Beta-Lactams. In Genetics and biochemistry of antibiotic biosynthesis. L.C. Vining and C. Stuttard, editors. Butterworth-Heinemann, Massachusettes. 239-68. Jensen, S.E., D.W.S. Westlake, and S. Wolfe. 1985. Deacetoxycephalosporin C synthase and deacetoxycephalosporin C hydrolase are two separate enzymes in Strepmyces clavuligerus. J. Antibiot. 38:263-5. Kimura, H., M. Izawa, and Y. Sumino. 1996. Molecular analysis of the gene cluster involved in cephalosporin biosynthesis from Lysobacter lactamgenus YK90. Appl. Microbiol. Biotechnol. 44:589-96. Kovacevic, S., and J.R. Miller. 1991. Cloning and sequencing of the beta-lactam hydroxylase gene (cefF) from Streptomyces clavuligerus: gene duplication may have led to separate hydroxylase and expandase activities in the actinomycetes. J. Bacteriol. 173:398-400. Kovacevic, S., B.J. Weigel, M.B. Tobin, T.D. Ingolia, and J.R. Miller. 1989. Cloning, characterization, and expression in Escherichia coli of the Streptomyces clavuligerus gene encoding deacetoxycephalosporin C synthetase. J. Bacteriol. 171:754-60. Lee, H.J., M.D. Lloyd, K. Harlos, I.J. Clifton, J.E. Baldwin, and C.J. Schofield. 2001a. Kinetic and crystallographic studies on deacetoxycephalosporin C synthase (DAOCS). J. Mol. Biol. 308:937-48. Lee, H.J., M.D. Lloyd, I.J. Clifton, J.E. Baldwin, K. Harlos, A. Dubus, J.E. Baldwin, J.M. Frere, and C.J. Schofield. 2001b. Alteration of the co-substrate selectivity of deacetoxycephalosporin C synthase: the role of arginine 258. J. Biol. Chem. 276:18290-5. Lee, H.J., M.D. Lloyd, K. Harlos, and C.J. Schofield. 2000. The effect of cysteine mutations on recombinant deacetoxycephalosporin C synthase from S. clavuligerus. Biochem. Biophys. Res. Commun. 267:445-8. Lee, H.J., C.J. Schofield, and M.D. Lloyd. 2002. Active site mutations of recombinant deacetoxycephalosporin C synthase. Biochem. Biophys. Res. Commun. 292:66-70. Levy, S.B. 1989. Evolution and spread of tetracycline resistance determinants. J. Antimicrob. Chemother. 24:1-3. Lipscomb, S.J., H.J. Lee, M. Mukherji, J.E. Baldwin, C.J. Schofield, and M.D. Lloyd. 2002. The role of arginine residues in substrate binding and catalysis by deacetoxycephalosporin C synthase. Eur. J. Biochem. 269:2735-9. Livermore, D.M., and J.D. Williams. 1996a. b-Lactams: mode of action and mechanisms of bacterial resistance. In Antibiotics in laboratory medicine. V. Lorian, editor. Williams and Wilkins, Baltimore. 502-77. Livermore, D.M., and J.D. Williams. 1996b. Mode of action and mechanisms of bacterial resistance. In Antibiotics in Laboratory Medicine. V. Lorian, editor. Williams and Wilkins, Baltimore. 502-77. Lloyd, M.D., H.J. Lee, K. Harlos, Z.H. Zhang, J.E. Baldwin, C.J. Schofield, J.M. Charnock, C.D. Garner, T. Hara, A.C. Terwisscha van Scheltinga, K. Valegard, J.A. Viklund, J. Hajdu, I. Andersson, A. Danielsson, and R. Bhikhabhai. 1999. Studies on the active site of deacetoxycephalosporin C synthase. J. Mol. Biol. 287:943-60. Maeda, K., J.M. Luengo, O. Ferrero, S. Wolfe, M.Y. Lebedev, A. Fang, and A.L. Demain. 1995. The substrate specificity of deacetoxycephalosporin C synthetase (“expandase”) of Streptomyces clavuligerus is extremely narrow. Enzyme Microb. Technol. 17:231-4. Markiewicz, Z., and A. Tomasz. 1989. Variation in penicillin-binding protein patterns of penicillin-resistance clinical isolates of pneumococci. J. Clinical Microb. 27:405-10. Martin, J.F. 1992. Clusters of genes for the biosynthesis of antibiotics: regulatory genes and overproduction of pharmaceuticals. J. Ind. Microbiol. 9:73-90. Martin, J.F. 1998. New aspects of genes and enzymes for beta-lactam antibiotic biosynthesis. Appl. Microbiol. Biotechnol. 50:1-15. Matagne, A., J. Lamotte-Brasseur, and J.-M. Frere. 1998. Catalytic properties of class A b-lactamases, efficiency and diversity. Biochem. J. 330:581-95. McDowell, T.D., and K.E. Reid. 1989. Mechanism of penicillin killing in the absence of bacterial lysis. Antimicrob. Agents Chemother. 33:1680-5. McMurry, L., R.E. Petrucci, and S.B. Levy. 1980. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc. Natl. Acad. Sci. USA 24:554-61. Neu, H.C. 1992. The crisis in antibiotic resistance. Science. 257:1064-73. Neu, H.C. 1995. Emergence and mechanisms of bacterial resistance in surgical infections. Am. Surg. 169 (suppl 5A):13S-20S. Nozaki, Y., K. Okanogi, N. Katayama, H. Ono, S. Harada, M. Kondo, and H. Okazaki. 1984. Cephabacins, new cephem antibiotics of bacterial origin. 4. Antibacterial activities, stability to b-lactamases and mode of action. J. Antibiot (Tokyo). 37:1528-35. O'Callaghan, C.H. 1979. Description and classification of the newer cephalosporins and their relationships with the established compounds. J. Antimicro. Chemother. 5:635-71. O'Sullivan, J., and E.P. Abraham. 1980. The conversion of cephalosporins to 7-a-methoxycephalosporins by cell-free extracts of Streptomyces clavuligerus. Biochem. J. 186:613-6. Paralkar, A.S., and S.E. Jensen. 1997. Comparative genetics and molecular biology of b-lactam biosynthesis. In Biotechnology of antibiotics. W.R. Strohl, editor. Marcel Dekker Inc., New York. 241-77. Roach, P.L., I.J. Clifton, V. Fulop, K. Horlos, G.J. Barton, J. Hajdu, I. Andersson, C.J. Schofield, and J.E. Baldwin. 1995. Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes. Nature 375:700-4. Roach, P.L., I.J. Clifton, C.M.H. Hensgens, N. Shibata, C.J. Schofield, J. Hajdu, and J.E. Baldwin. 1997. Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature 387:827-30. Ross, J. 1990. Inducible erythromycin resistance in staphylococci is encoded by a number of the ATP-binding transport super gene family. Mol. Microbiol. 4:1207-14. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Appendix A: bacterial media, antibiotics, and bacterial strains. In Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, N. Y. A.1-A.13. Samson, S.M., J.E. Dotzlaf, M.L. Slisz, G.W. Becker, R.M. van Frank, L.E. Veal, W.-K. Yeh, J.R. Miller, Q.S. W., and T.D. Ingolia. 1987. Cloning and expression of the fungal expandase/hydroxylase gene involved in cephalosporin biosynthesis. Bio/Techniques 5:1207-14. Schoevaart, R., and Kieboom. 2001. Combined catalytic reactions- Nature's way: Going from traditional step-by-step methods to one-pot coupled conversion saves raw materials and energy and reduces waste. Chemical innovation 31:33-9. Scholar, E.M., and W.B. Pratt. 2000a. The inhibitors of cell wall synthesis, I: mechanism of action of the penicillins, cephalosporins, vancomycin, and other inhibitors of cell wall synthesis. In Antimicrobial Drugs. E.M. Scholar and W.B. Pratt, editors. Oxford University Press, New York. 51-80. Scholar, E.M., and W.B. Pratt. 2000b. The inhibitors of cell wall synthesis, II: pharmacology and adverse effects of the penicillins, cephalosporins, carbapenems, monobactams, vanomycin, and bacitracin. In Antimicrobial Drugs. E.M. Scholar and W.B. Pratt, editors. Oxford University Press, New York. 81-126. Shaw, K.J., P.N. Rather, S.R. Hare, and G.H. Miller. 1993. Molecular genetics of aminoglycoside resistance genes and familial relationship of the aminoglycoside-modifying enzymes. Microbiol. Rev. 57:138-63. Shaw, W.V. 1984. Bacterial resistance to chloramphenicol. Br. Med. Bull. 40:36-41. Shen, Y.-Q., J. Heim, N.A. Soloman, S. Wolfe, and A.L. Demain. 1984. Repression of b-lactam production in Cephalosporium acremonum by nitrogen sources. J. Antibiot. 37:503-511. Sim, J., and T.-S. Sim. 2001. In vitro conversion of penicillin G and ampicillin by recombinant Streptomyces clavuligerus NRRL 3585 deacetoxycephalosporin C synthase. Enzyme Microbiol. Technol. 29:240-5. Sim, J., and T.S. Sim. 2000. Mutational evidence supporting the involvement of tripartite residues His183, Asp185, and His243 in Streptomyces clavuligerus deacetoxycephalosporin C synthase for catalysis. Biosci. Biotechnol. Biochem. 64:828-32. Spratt, B.G. 1980. Biochemical and genetical approaches to the mechanism of action of penicillin. Philos. Trans. R. Soc. Lond. (Biol.). 289:273-83. Spratt, B.G. 1994. Resistance to antibiotics mediated by target alterations. Science 264:388-93. Stemmer, W.P.C. 1994a. DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91:10747-51. Stemmer, W.P.C. 1994b. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389-91. Strohl, W.R. 1997. Industrial antibiotics: today and the future. In Biotechnology of antibiotics. W.R. Strohl, editor. Marcel Dekker Inc., New York. 1-48. Studier, F.W., and B.A. Moffatt. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned gene. J. Mol. Biol. 189:113-30. Sutherland, J.D., R.A.L. Bovenberg, and J.M. van der Laan. July 1999. Process for the production of SSC's via expandase activity on penicillin G. U.S. patent 5,919,680. Sutherland, R. 1997. b-lactams: penicillins. In Antibiotic and chemotherapy: anti-infective agents and their use in therapy. F. O'Grady, R.G. Finch, H.P. Lambert, and D. Greenwood, editors. Churchill Livingstone, New York. 256-305. Suzuki, H., Y. Nishimura, and Y. Hirota. 1978. On the process of cell division in Escherichia coli: a series of mutants of E. coli altered in the penicillin binding proteins. Proc. Natl. Acad. Sci. USA 75:664-8. Tange, T., S. Taguchi, S. Kojima, K. Miura, and H. Momose. 1994. Improvement of a useful enzyme (subtilisin BPN') by an experimental evolution system. Appl. Microbiol. Biotechnol. 41:239-44. Tobin, M.B., C. Gustafasson, and G.W. Huisman. 2000. Directed evolution: the 'rational' basis for 'irrational design. Curr. Opin. Struct. Biol. 10:421-7. Valegard, K., A.C. van Scheltinga, M.D. Lloyd, T. Hara, S. Ramaswamy, A. Perrakis, A. Thompson, H.J. Lee, J.E. Baldwin, C.J. Schofield, J. Hajdu, and I. Andersson. 1998. Structure of a cephalosporin synthase. Nature 394:805-9. Velasco, J., J. Luis Adrio, M. Angel Moreno, B. Diez, G. Soler, and J.L. Barredo. 2000. Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA) using recombinant strains of Acremonium chrysogenum. Nat. Biotechnol. 18:857-61. Waksman, S.A., and H.A. Lechevalier. 1962. The actinomycetes. Bailliere, London.Vol 3. Walsh, C. 2000. Molecular mechanisms that confer antibacterial drug resistance. Nature 406:775-781. Wise, R. 1997. b-lactams: cephalosporins. In Antibiotic and chemotherapy: anti-infective agents and their use in therapy. F. O'Grady, R.G. Finch, H.P. Lambert, and D. Greenwood, editors. Churchill Livingstone, New York. 202-55. Zanca, D.M., and J.F. Martin. 1983. Carbon catabolite regulation of the conversion of penicillin N into cephalosporin C. J. Antibiot. 36:700-8.
|