跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/26 01:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐雅慧
研究生(外文):Ya-hui Hsu
論文名稱:建立篩選作用於Toll-likereceptor4訊息傳導路徑之中藥的方法
論文名稱(外文):Establishment of a method to screen for medical herbs that act via Toll-like receptor 4 signaling pathway
指導教授:傅淑玲傅淑玲引用關係
指導教授(外文):Shu-ling Fu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:傳統醫藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:71
中文關鍵詞:中藥內毒素Toll-like receptor 4
外文關鍵詞:Toll-like receptor 4NF-kappaBLuciferaseherbLPSdioscorinpatatinCordyceps sinensis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
許多中藥被認為有具有調控免疫之作用,Toll-like receptor 4 (TLR4) 是與先天性免疫及適應性免疫相關之接受體,極可能也是參與中藥作用的標的分子。本實驗主要目的是建立可篩選出作用於TLR4訊息傳導路徑之中藥的方法。我們已經建立可快速篩選出具活化NF-kappaB之中藥與測量TNF-在TLR4功能正常或功能缺陷老鼠的骨髓細胞中之表現量的方法。為了偵測NF-kappaB活化程度,老鼠巨嗜細胞株RAW 264.7 轉染指標性基因pELAM-Luc,此指標性基因含有NF-kappaB-responsive sites及luciferase基因,故可藉由測量luciferase的活性來觀察NF-kappaB被活化之程度。我們並利用這個方法篩選了34種純化合物、23種部分純化物、26種醇抽取物與31種水抽取物。在實驗中發現,一些中藥抽取物有LPS污染情形。LPS是已知的TLR4配體,如果藥物中有LPS污染會造成誤判結果。為了排除LPS之影響,我們於藥物中加入polymyxin B來去除LPS之作用。篩選過的藥物中,Patatin、Dioscorin-a 與冬蟲夏草水抽取物具有活化NF-kappaB的能力。為了進一步確認這些藥物是否與TLR4相關,Patatin、Dioscorin-a與冬蟲夏草水抽取物將進一步檢測是否其作用與TLR4相關。
Many traditional medical herbs are believed to modulate immune system. Toll-like receptor 4 (TLR4) is a critical protein linking innate and adaptive immunity, and appears to be a potential molecular target for these drugs. The present study aims to establish a method to screen for herbs or pure compounds that act via TLR4 signaling pathways. We had established an efficient system to screen herbs or pure compounds that activate NF-kappaB and the procedure to detect TNF-a expression in bone marrow cells isolated from wild type or TLR4-defective mice for selecting TLR4-dependent drugs. For identification of drugs that can activate NF-kappaB, murine macrophage RAW 264.7 cells were transfected with pELAM1-Luc, contains NF-kappaB-responsive region followed by the luciferase gene. We observed activation of NF-kappaB by monitoring luciferase activity. We applied this method to screen 34 pure compounds, 23 partially purified fractions, 26 herbal ethanol extracts and 31 herbal water extracts. In our study, we found some of these herbal extracts were LPS-contaminated. LPS is known as a TLR4 ligand, so the LPS contamination of drugs might lead to mislead conclusion. In order to remove the effects from contaminated LPS, we added polymyxin B to neutralize LPS effects. Among all drugs we tested, LPS-depleted Patatin, Dioscorin-a and Cordyceps sinensis exhibit ability to activate NF-kappaB. LPS-depleted Patatin, Dioscorin-a and C. sinensis will be tested to determine whether they exhibit different expression of TNF-a in wild type and TLR4-defective mice.
Chapter 1. Introduction
1.1. Immune system
1.2. Toll-like receptor family
1.3. Toll-like receptor 4
1.4. Tonics as immune-modulating drugs
1.5. Aim of study and study design
Chapter 2. Materials and Methods
2.1. Materials
2.1.1. Equipments
2.1.2. Reagents
2.1.3. Drugs
2.1.4. Cells and Medium
2.1.5. Experimental animals
2.2. Methods
2.2.1. Preparation of drugs
2.2.2. Transfection
2.2.3. Luciferase assay
2.2.4. Isolation and culture of hematopoietic cells from mouse bone marrow
2.2.5. Reverse transcriptase-polymerase chain reaction (RT-PCR)
2.3. Statistical analysis
Chapter 3. Results
3.1. Establishment of an efficient system to screen herbs that activate NF-kappaB
3.2. Identification of TLR4-dependent drugs by detecting downstream gene TNF-alfa expression
3.3. Screening for Chinese herbal extracts and pure compounds that activate NF-kappaB
3.4. Depletion of LPS contamination of drugs
Chapter 4. Discussion
4.1. Genetic reporter system
4.2. Choice of cell line
4.3. Transfection
4.4. LPS contamination of herbal drugs
4.5. Background of drugs
4.6. Methods to determine TLR4-dependent drugs
4.7. Application
Chapter 5. Conclusion
1.Takeda K, Kaisho T, Akira S. 2003. Toll-like receptors. Annu. Rev. Immunol. 21:335-76
2.Zuany-Amorim C, Hastewell J, Walker C. 2002. Toll-like receptors as potential therapeutic targets for multiple diseases. Nat. Rev. Drug Discov. 1:797-807
3.Janeway CA, Jr., Medzhitov R. 2002. Innate immune recognition. Annu. Rev. Immunol. 20:197-216
4.Medzhitov R. 2001. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1:135-45
5.Anderson KV, Jurgens G, Nusslein-Volhard C. 1985. Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42:779-89
6.Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. 1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973-83
7.Taguchi T, Mitcham JL, Dower SK, Sims JE, Testa JR. 1996. Chromosomal localization of TIL, a gene encoding a protein related to the Drosophila transmembrane receptor Toll, to human chromosome 4p14. Genomics 32:486-8
8.Medzhitov R, Preston-Hurlburt P, Janeway CA, Jr. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394-7
9.Lien E, Ingalls RR. 2002. Toll-like receptors. Crit Care Med. 30:S1-11
10.Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. 1998. A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. 95:588-93
11.Kobe B, Deisenhofer J. 1995. Proteins with leucine-rich repeats. Curr. Opin. Struct. Biol. 5:409-16
12.Akira S, Takeda K, Kaisho T. 2001. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2:675-80
13.Means TK, Golenbock DT, Fenton MJ. 2000. Structure and function of Toll-like receptor proteins. Life Sci. 68:241-58
14.Muzio M, Polentarutti N, Bosisio D, Manoj Kumar PP, Mantovani A. 2000. Toll-like receptor family and signalling pathway. Biochem. Soc. Trans. 28:563-6
15.Schuster JM, Nelson PS. 2000. Toll receptors: an expanding role in our understanding of human disease. J. Leukoc. Biol. 67:767-73
16.Medzhitov R, Janeway C, Jr. 2000. Innate immunity. N. Engl. J. Med. 343:338-44
17.Hajjar AM, O''Mahony DS, Ozinsky A, Underhill DM, Aderem A, Klebanoff SJ, Wilson CB. 2001. Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J. Immunol. 166:15-9
18.Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732-8
19.Bauer S, Wagner H. 2002. Bacterial CpG-DNA licenses TLR9. Curr. Top. Microbiol. Immunol. 270:145-54
20.Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099-103
21. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S. 2002. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3:196-200
22. Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H, Lipford G, Bauer S. 2002. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat. Immunol. 3:499
23. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085-8
24. Song PI, Abraham TA, Park Y, Zivony AS, Harten B, Edelhauser HF, Ward SL, Armstrong CA, Ansel JC. 2001. The expression of functional LPS receptor proteins CD14 and toll-like receptor 4 in human corneal cells. Invest Ophthalmol. Vis. Sci. 42:2867-77
25. Yang Q, Zhu P, Wang Z, Jiang J. 2002. Lipopolysaccharide upregulates the expression of Toll-like receptor 4 in human vascular endothelial cells. Chin Med. J. 115:286-9
26. Liang F, Huang N, Wang B. 2001. Human toll like receptor gene expression in human pulmonary granule epithelial cells and umbilical vein endothelial cells. Hua Xi Yi Ke Da Xue Xue Bao 32:516-8
27. Hijiya N, Miyake K, Akashi S, Matsuura K, Higuchi Y, Yamamoto S. 2002. Possible involvement of toll-like receptor 4 in endothelial cell activation of larger vessels in response to lipopolysaccharide. Pathobiology 70:18-25
28. Uesugi T, Froh M, Arteel GE, Bradford BU, Thurman RG. 2001. Toll-like receptor 4 is involved in the mechanism of early alcohol-induced liver injury in mice. Hepatology 34:101-8
29. Abreu MT, Arnold ET, Thomas LS, Gonsky R, Zhou Y, Hu B, Arditi M. 2002. TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells. J. Biol. Chem. 277:20431-7
30. Kawai T, Adachi O, Ogawa T, Takeda K, Akira S. 1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity. 11:115-22
31. Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A, Gray P, Harte MT, McMurray D, Smith DE, Sims JE, Bird TA, O''Neill LA. 2001. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413:78-83
32. Horng T, Barton GM, Medzhitov R. 2001. TIRAP: an adapter molecule in the Toll signaling pathway. Nat. Immunol. 2:835-41
33. Kawai T, Takeuchi O, Fujita T, Inoue J, Muhlradt PF, Sato S, Hoshino K, Akira S. 2001. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol. 167:5887-94
34. Smiley ST, King JA, Hancock WW. 2001. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J. Immunol. 167:2887-94
35. Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, Chow JC, Strauss JF, III. 2001. The extra domain A of fibronectin activates Toll-like receptor 4. J. Biol. Chem. 276:10229-33
36. Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, Miyake K, Freudenberg M, Galanos C, Simon JC. 2002. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J. Exp. Med. 195:99-111
37. Johnson GB, Brunn GJ, Kodaira Y, Platt JL. 2002. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J. Immunol. 168:5233-9
38. Byrd-Leifer CA, Block EF, Takeda K, Akira S, Ding A. 2001. The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol. Eur. J. Immunol. 31:2448-57
39. Ando I, Tsukumo Y, Wakabayashi T, Akashi S, Miyake K, Kataoka T, Nagai K. 2002. Safflower polysaccharides activate the transcription factor NF-kappaB via Toll-like receptor 4 and induce cytokine production by macrophages. Int. Immunopharmacol. 2:1155-62
40. Mita Y, Dobashi K, Shimizu Y, Nakazawa T, Mori M. 2002. Surface expression of toll-like receptor 4 on THP-1 cells is modulated by Bu-Zhong-Yi-Qi-Tang and Shi-Quan-Da-Bu-Tang. Methods Find. Exp. Clin. Pharmacol. 24:67-70
41. Hsu HY, Chen YP, Shen SJ, Hsu CS, Chen CC, Chang HC. 1986. Oriental materia medica 519-520 pp.
42. Kitts D, Hu C. 2000. Efficacy and safety of ginseng. Public Health Nutr. 3:473-85
43. Zee-Cheng RK. 1992. Shi-quan-da-bu-tang (ten significant tonic decoction), SQT. A potent Chinese biological response modifier in cancer immunotherapy, potentiation and detoxification of anticancer drugs. Methods Find. Exp. Clin. Pharmacol. 14:725-36
44. Kao ST, Yang SL, Hsieh CC, Yang MD, Wang TF, Lin JG. 2000. Immunomodulation of Bu-Zhong-Yi-Qi-Tang on in vitro granulocyte colony-stimulating-factor and tumor necrosis factor-alpha production by peripheral blood mononuclear cells. Immunopharmacol. Immunotoxicol. 22:711-20
45. Bulut Y, Faure E, Thomas L, Karahashi H, Michelsen KS, Equils O, Morrison SG, Morrison RP, Arditi M. 2002. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J. Immunol. 168:1435-40
46. Hou WC, Liu JS, Chen HJ, Chen TE, Chang CF, Lin YH. 1999. Dioscorin, the major tuber storage protein of yam (Dioscorea batatas decne) with carbonic anhydrase and trypsin inhibitor activities. J. Agric. Food Chem. 47:2168-72
47. Hsu FL, Lin YH, Lee MH, Lin CL, Hou WC. 2002. Both dioscorin, the tuber storage protein of yam (Dioscorea alata cv. Tainong No. 1), and its peptic hydrolysates exhibited angiotensin converting enzyme inhibitory activities. J. Agric. Food Chem. 50:6109-13
48. Hajjar AM, Ernst RK, Tsai JH, Wilson CB, Miller SI. 2002. Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nat. Immunol. 3:354-9
49. Hume DA, Underhill DM, Sweet MJ, Ozinsky AO, Liew FY, Aderem A. 2001. Macrophages exposed continuously to lipopolysaccharide and other agonists that act via toll-like receptors exhibit a sustained and additive activation state. BMC. Immunol. 2:11
50. Schindler U, Baichwal VR. 1994. Three NF-kappa B binding sites in the human E-selectin gene required for maximal tumor necrosis factor alpha-induced expression. Mol. Cell Biol. 14:5820-31
51. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M. 1999. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189:1777-82
52. Raschke WC, Baird S, Ralph P, Nakoinz I. 1978. Functional macrophage cell lines transformed by Abelson leukemia virus. Cell 15:261-7
53. Dalpke AH, Opper S, Zimmermann S, Heeg K. 2001. Suppressors of cytokine signaling (SOCS)-1 and SOCS-3 are induced by CpG-DNA and modulate cytokine responses in APCs. J. Immunol. 166:7082-9
54. Du X, Poltorak A, Silva M, Beutler B. 1999. Analysis of Tlr4-mediated LPS signal transduction in macrophages by mutational modification of the receptor. Blood Cells Mol. Dis. 25:328-38
55. Lynn WA, Golenbock DT. 1992. Lipopolysaccharide antagonists. Immunol. Today 13:271-6
56. Ulevitch RJ, Tobias PS. 1995. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu. Rev. Immunol. 13:437-57
57. Gao B, Tsan MF. 2003. Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J. Biol. Chem. 278:174-9
58. Gao B, Tsan MF. 2003. Recombinant human heat shock protein 60 does not induce the release of tumor necrosis factor-alpha from murine macrophages. J. Biol. Chem. 278:22523-9
59. Okamoto M, Oshikawa T, Tano T, Ohe G, Furuichi S, Nishikawa H, Ahmed SU, Akashi S, Miyake K, Takeuchi O, Akira S, Moriya Y, Matsubara S, Ryoma Y, Saito M, Sato M. 2003. Involvement of Toll-like receptor 4 signaling in interferon-gamma production and antitumor effect by Streptococcal agent OK-432. J. Natl. Cancer Inst. 95:316-26
60. Teramoto K, Nakamoto Y, Kunitomo T, Shoji H, Tani T, Hanazawa K, Kodama M. 2002. Removal of endotoxin in blood by polymyxin B immobilized polystyrene-derivative fiber. Ther. Apher. 6:103-8
61. Morrison DC, Jacobs DM. 1976. Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry. 13:813-8
62. Storm DR, Rosenthal KS, Swanson PE. 1977. Polymyxin and related peptide antibiotics. Annu. Rev. Biochem. 46:723-63
63. Rawadi G, Roman-Roman S. 1996. Mycoplasma membrane lipoproteins induced proinflammatory cytokines by a mechanism distinct from that of lipopolysaccharide. Infect. Immun. 64:637-43
64. Rawadi G, Roman-Roman S, Castedo M, Dutilleul V, Susin S, Marchetti P, Geuskens M, Kroemer G. 1996. Effects of Mycoplasma fermentans on the myelomonocytic lineage. Different molecular entities with cytokine-inducing and cytocidal potential. J. Immunol. 156:670-8
65. Gao B, Tsan MF. 2003. Recombinant Human Heat Shock Protein 60 Does Not Induce the Release of Tumor Necrosis Factor alpha from Murine Macrophages. J. Biol. Chem. 278:22523-9
66. Hirschberg HJ, Simons JW, Dekker N, Egmond MR. 2001. Cloning, expression, purification and characterization of patatin, a novel phospholipase A. Eur. J. Biochem. 268:5037-44
67. Jimenez M, Escribano J, Gandia-Herrero F, Chazarra S, Cabanes J, Garcia-Carmona F, Perez-Gilabert M. 2002. Characterization of patatin esterase activity in AOT-isooctane reverse micelles. Biotechnol. Prog. 18:635-40
68. Schmidt MH, Raulf-Heimsoth M, Posch A. 2002. Evaluation of patatin as a major cross-reactive allergen in latex-induced potato allergy. Ann. Allergy Asthma Immunol. 89:613-8
69. Seppala U, Majamaa H, Turjanmaa K, Helin J, Reunala T, Kalkkinen N, Palosuo T. 2001. Identification of four novel potato (Solanum tuberosum) allergens belonging to the family of soybean trypsin inhibitors. Allergy 56:619-26
70. Seppala U, Alenius H, Turjanmaa K, Reunala T, Palosuo T, Kalkkinen N. 1999. Identification of patatin as a novel allergen for children with positive skin prick test responses to raw potato. J. Allergy Clin. Immunol. 103:165-71
71. Majamaa H, Seppala U, Palosuo T, Turjanmaa K, Kalkkinen N, Reunala T. 2001. Positive skin and oral challenge responses to potato and occurrence of immunoglobulin E antibodies to patatin (Sol t 1) in infants with atopic dermatitis. Pediatr. Allergy Immunol. 12:283-8
72. Shewry PR. 2003. Tuber Storage Proteins. Ann. Bot. (Lond) 91:755-69
73. Hou WC, Lee MH, Chen HJ, Liang WL, Han CH, Liu YW, Lin YH. 2001. Antioxidant activities of dioscorin, the storage protein of yam (Dioscorea batatas Decne) tuber. J. Agric. Food Chem. 49:4956-60
74. Wang ZX, Wang XM, Wang TZ. 1995. Current status of pharmacological study on Cordyceps sinensis and Cordyceps hyphae. Zhongguo Zhong Xi Yi Jie He Za Zhi. 15:255-6
75. Zhu JS, Halpern GM, Jones K. 1998. The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis: part I. J. Altern. Complement Med. 4:289-303
76. Zhu JS, Halpern GM, Jones K. 1998. The scientific rediscovery of a precious ancient Chinese herbal regimen: Cordyceps sinensis: part II. J. Altern. Complement Med. 4:429-57
77. Liu P, Zhu J, Huang Y, Liu C. 1996. Influence of Cordyceps sinensis (Berk.) Sacc. and rat serum containing same medicine on IL-1, IFN and TNF produced by rat Kupffer cells. Zhongguo Zhong Yao Za Zhi. 21:367-9, 384
78. Chen YJ, Shiao MS, Lee SS, Wang SY. 1997. Effect of Cordyceps sinensis on the proliferation and differentiation of human leukemic U937 cells. Life Sci. 60:2349-59
79. Koh JH, Yu KW, Suh HJ, Choi YM, Ahn TS. 2002. Activation of macrophages and the intestinal immune system by an orally administered decoction from cultured mycelia of Cordyceps sinensis. Biosci. Biotechnol. Biochem. 66:407-11
80. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806-11
81. Sharp PA. 2001. RNA interference. Genes Dev. 15:485-90
82. Kitabwalla M, Ruprecht RM. 2002. RNA interference--a new weapon against HIV and beyond. N. Engl. J. Med. 347:1364-7
83. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494-8
84. Sultzer BM. 1968. Genetic control of leucocyte responses to endotoxin. Nature 219:1253-4
85. Qureshi ST, Lariviere L, Leveque G, Clermont S, Moore KJ, Gros P, Malo D. 1999. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med. 189:615-25
86. Damais C, Galelli A, Parant M. 1977. Non-specific responses of C3H/He low responder mice to LPS and to TCA-extracted endotoxin. Ann. Immunol. 128:67-9
87. Wannemuehler MJ, Michalek SM, Jirillo E, Williamson SI, Hirasawa M, McGhee JR. 1984. LPS regulation of the immune response: Bacteroides endotoxin induces mitogenic, polyclonal, and antibody responses in classical LPS responsive but not C3H/HeJ mice. J. Immunol. 133:299-305
88. Rosenstreich DL, Vogel SN, Jacques AR, Wahl LM, Oppenheim JJ. 1978. Macrophage sensitivity to endotoxin: genetic control by a single codominant gene. J. Immunol. 121:1664-70
89. Mu MM, Chakravortty D, Sugiyama T, Koide N, Takahashi K, Mori I, Yoshida T, Yokochi T. 2001. The inhibitory action of quercetin on lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophage cells. J. Endotoxin Res. 7:431-8
90. Kim H, Kim YS, Kim SY, Suk K. 2001. The plant flavonoid wogonin suppresses death of activated C6 rat glial cells by inhibiting nitric oxide production. Neurosci. Lett. 309:67-71
91. Lyngby J, Olsen LH, Eidem T, Lundanes E, Jantzen E. 2002. Quantification of lipopolysaccharides in outer membrane vesicle vaccines against meningococcal disease. High-performance liquid chromatographic determination of the constituent 3-hydroxy-lauric acid. Biologicals 30:7-13
92. Saraf A, Larsson L, Burge H, Milton D. 1997. Quantification of ergosterol and 3-hydroxy fatty acids in settled house dust by gas chromatography-mass spectrometry: comparison with fungal culture and determination of endotoxin by a Limulus amebocyte lysate assay. Appl. Environ. Microbiol. 63:2554-9
93. Szponar B, Norin E, Midtvedt T, Larsson L. 2002. Limitations in the use of 3-hydroxy fatty acid analysis to determine endotoxin in mammalian samples. J. Microbiol. Methods 50:283-9
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top