(3.236.228.250) 您好!臺灣時間:2021/04/17 12:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳茲睿
研究生(外文):Tsu-Juey Wu
論文名稱:以動物模式探討心臟纖維顫動波形特性及形成機轉
論文名稱(外文):Wave Front Characteristics and Mechanisms of Cardiac Fibrillation in Animal Models
指導教授:陳鵬生陳鵬生引用關係丁紀台
指導教授(外文):Peng-Sheng ChenChih-Tai Ting
學位類別:博士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:91
語文別:中文
論文頁數:128
中文關鍵詞:心房纖維顫動心室纖維顫動
外文關鍵詞:atrial fibrillationventricular fibrillation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
心臟纖維顫動包括了心房纖維顫動和心室纖維顫動。兩者都是目前臨床上所面臨的重大挑戰。
心房纖維顫動
心房纖維顫動是臨床上最常見的持續性心律不整,同時亦是造成心因性中風之主因。心房纖維顫動所引起之快速心室反應會造成一系列不良影響,包括心臟衰竭和因長期心律過速所引發之心肌病變,而目前藥物只能部份治療這種心律不整。最近的臨床研究顯示利用導管電燒術能有效治療一部份陣發性心房纖維顫動病患。在這一類病患中,心房纖維顫動往往由肺靜脈以及Marshall氏韌帶之局部快速放電所引發。然而在過去,尤其是慢性心房纖維顫動,“多數波”假說被大部份學者認為是這類心律不整之主因。我們利用動物(犬)模式探討在慢性快速電刺激引發之持續性心房纖維顫動,肺靜脈以及Marshall氏韌帶對心房纖維顫動所以能持續不停之可能角色。
心室纖維顫動
儘管過去在抗心律不整藥物之研究有長足進步,但心室纖維顫動仍是每年心因性猝死之主因。為了發展出理想之治療方式,對於心室纖維顫動形成機轉之探討,刻不容緩。過去動作電位間距及傳導速度兩者之回歸曲線特性被認為是波長產生變動的來源。波長一旦產生變動,會進而導致波裂和纖維顫動之形成。我們利用動物(兔)模式探討在快速電刺激引發之心室纖維顫動,動作電位間距與傳導速度兩者之回歸曲線特性對心室纖維顫動形成之重要性。
在第一章中,我們先回顧心臟纖維顫動之流行病學及血液動力學變化。在第二章中,則探討心臟纖維顫動之形成機轉,包括“多數波”假說和“局部來源”假說。“多數波”假說與“波長”學說理論關係密切。“局部來源”假說︰在心房纖維顫動方面,探討肺靜脈,Marshall氏韌帶,以及上腔靜脈解剖結構及電生理特性。並就肺靜脈及Marshall氏韌帶對心房纖維顫動形成之角色做回顧性及前瞻性探討,包括動物實驗及臨床研究證據。在心室纖維顫動方面,則探討“母迴轉體”假說及相關之“纖維性”傳導阻斷現象。第三章著重於介紹回歸曲線理論,並就回歸曲線特性對心室纖維顫動形成之重要性做回顧性及前瞻性探討,包括回歸曲線之種類及建構,回歸曲線斜率對波裂現象之重要性,電腦模擬實驗證據及藥物實驗證據。第四章詳述利用慢性快速電刺激引發持續性心房纖維顫動之動物(犬)模式,發現“肺靜脈及Marshall氏韌帶為快速放電區域”之研究結果,並討論後續相關研究。第五章則詳述利用快速電刺激引發心室纖維顫動之動物(兔)模式,證明“組織興奮性及動作電位間距回歸曲線特性對心室纖維顫動形成皆具重要性”之研究結果。第六章針對本論文中新的發現以及心房纖維顫動與心室纖維顫動之異同,做一探討並做結論。
結論
在慢性快速電刺激引發之持續性心房纖維顫動,肺靜脈及Marshall氏韌帶為快速放電區域。這個發現提供一個可能簡易有效之臨床治療方法,即利用電燒術或手術分離肺靜脈及Marshall氏韌帶,可以使心房纖維顫動停止。另外,組織興奮性及動作電位間距回歸曲線特性,兩者對心室纖維顫動之形成皆具重要性。臨床上,因藥物或缺氧造成組織興奮性降低,如單使動作電位間距回歸曲線變平,將無法有效阻止心室纖維顫動之發生與進行。

Cardiac fibrillation includes atrial fibrillation (AF) and ventricular fibrillation (VF). Despite recent advances in antiarrhythmic therapies, both remain the major health problems.
Atrial Fibrillation
AF is the most common sustained cardiac arrhythmia, and is the major cardiac cause of stroke. The rapid ventricular rate resulting from AF may lead to a series of adverse outcomes, such as congestive heart failure and tachycardia-related cardiomyopathy. Medications can only partially control this arrhythmia. It has been recently reported that patients with paroxysmal AF can be cured by catheter ablation procedures. In these patients, focal rapid activations always arose from either the pulmonary veins (PVs) or the ligament of Marshall (LOM). However, especially in chronic AF, the multiple-wavelet hypothesis was generally believed as the mechanism to create an unorganized rhythm. In this thesis, we used chronic rapid pacing-induced sustained AF in dogs to test the hypothesis that rapid activations arising from the PVs and the LOM may also play roles in the formation of sustained AF in vivo.
Ventricular Fibrillation
Although antiarrhythmic therapies have impressive advances, VF remains a major cause of sudden cardiac death annually. To develop an effective approach, we need to know more about the factors that control the degeneration of ventricular tachycardia (VT) into VF and the mechanism of VF maintenance. It was believed that action potential duration (APD) and conduction velocity (CV) restitutions are the source of wavelength oscillations, leading to spiral wave breakup. In this thesis, optical mapping techniques in Langendorff-perfused rabbit hearts were used to evaluate the possible importance of APD and CV restitution characteristics in VF maintenance.
First, we reviewed the epidemiology, the prognosis, and the hemodynamic consequences of cardiac fibrillation in chapter 1. In chapter 2, the major mechanisms of cardiac fibrillation, including the multiple-wavelet hypothesis and the focal-source hypothesis, were discussed. An important component of the multiple-wavelet hypothesis, the concept of the “wavelength of reentry”, was also emphasized. The focal-source hypothesis: Regarding to AF, anatomy and electrophysiology of the PVs, the LOM, and the superior vena cava were reviewed in detail. Both experimental and clinical studies were included. For VF, the “mother rotor” hypothesis and the associated “fibrillatory” conduction block were described. We then introduced the ”restitution” theory in chapter 3, including how to construct restitution curves, the importance of restitution steepness in the formation of wave break, and the favorable evidences obtained from computer simulation and pharmacological experiments. In chapter 4, we reported in detail the results of AF study that the PVs and the LOM are the sources of rapid activations in a canine model of sustained AF. We also presented the results of VF study in chapter 5 that there are two types of VF in isolated rabbit hearts. Both excitability and APD restitution are important in VF maintenance. Finally, in chapter 6, we emphasized the novel findings of this thesis and compared the wave front characteristics between AF and VF.
There are two major conclusions in this thesis: (1) During chronic rapid pacing-induced sustained AF, the PVs and the LOM are the sources of rapid activations. It provides a clinical implication that ablation or isolation of all the PVs and the LOM may result in cure of AF. (2) In addition to APD restitution, tissue excitability and CV restitution also play important roles in VF maintenance. As ischemia progresses, flattening APD restitution alone may not be a useful intervention.

中文摘要 1-3
英文摘要 4-6
中英文對照表 7-11
第一章 緒論 12-19
1-1 心房纖維顫動 13-17
1-2 心室纖維顫動 17-19
第二章 心臟纖維顫動之形成機轉 20-33
2-1 “多數波”假說 21-25
2-2 “局部來源”假說 25-32
第三章 波裂現象與回歸曲線理論 34-46
3-1 波裂形成之原因 35
3-2 回歸曲線理論 35-40
第四章 慢性快速電刺激引發持續性心房纖維顫動之動物
(犬)模式:肺靜脈及Marshall氏韌帶為局部快速
放電區域 47-73
第五章 快速電刺激引發心室纖維顫動之動物(兔)模式:
組織興奮性及活動電位間距回歸曲線特性對心室
纖維顫動形成之重要性 74-99
第六章 結論 100-104
參考文獻 105-126
已發表之論文相關著作 127-128

1. Feinberg WM, Blackshear JL, Laupacis A, Kronmal R, Hart RG. Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications. Arch Intern Med 1995;55:469-473.
2. Feinberg WM, Pearce LA, Hart RG, Cushman M, Cornell ES, Lip GY, Bovill EG. Markers of thrombin and platelet activity in patients with atrial fibrillation: correlation with stroke among 1531 participants in the stroke prevention in atrial fibrillation III study. Stroke 1999;30:2547-2553.
3. Albers GW, Atwood JE, Hirsh J, Sherman DG, Hughes RA, Connolly SJ. Stroke prevention in nonvalvular atrial fibrillation. Ann Intern Med 1991;115:727-736.
4. Ezekowitz MD, Levine JA. Preventing stroke in patients with atrial fibrillation. J Am Med Assoc 1999;281:1830-1835.
5. Okishige K, Sasano T, Yano K, Azegami K, Suzuki K, Itoh K. Serious arrhythmias in patients with apical hypertrophic cardiomyopathy. Intern Med 2001;40:396-402.
6. Redfield MM, Kay GN, Jenkins LS, Mianulli M, Jensen DN, Ellenbogen KA. Tachycardia-related cardiomyopathy: a common cause of ventricular dysfunction in patients with atrial fibrillation referred for atrioventricular ablation. Mayo Clin Proc 2000;75:790-795.
7. Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le Metayer P, Clementy J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 1998;339:659-666.
8. Chen SA, Hsieh MH, Tai CT, Tsai CF, Prakash VS, Yu WC, Hsu TL, Ding YA, Chang MS. Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation. Circulation 1999;100:1879-1886.
9. Hwang C, Karagueuzian HS, Chen PS. Idiopathic paroxysmal atrial fibrillation induced by a focal discharge mechanism in the left superior pulmonary vein: possible roles of the ligament of Marshall. J Cardiovasc Electrophysiol 1999;10:636-648.
10. Hwang C, Wu TJ, Doshi RN, Peter CT, Chen PS. Vein of Marshall cannulation for the analysis of electrical activity in patients with focal atrial fibrillation. Circulation 2000;101:1503-1505.
11. Moe GK, Abildskov JA. Atrial fibrillation as a self-sustaining arrhythmia independent of focal discharge. Am Heart J 1959;58:59-70.
12. Allessie MA, Boyden PA, Camm AJ, Kleber AG, Lab MJ, Legato MJ, Rosen MR, Schwartz PJ, Spooner PM, Van Wagoner DR, Waldo AL. Pathophysiology and prevention of atrial fibrillation. Circulation 2001;103:769-777.
13. Kopecky SL, Gersh BJ, McGoon MD, Whisnant JP, Holmes DR Jr, Ilstrup DM, Frye RL. The natural history of lone atrial fibrillation: a population-based study over three decades. N Engl J Med 1987;317:669-674.
14. Feinberg WM, Cornell ES, Nightingale SD, Pearce LA, Tracy RP, Hart RG, Bovill EG, for the Stroke Prevention in Atrial Fibrillation Investigators. Relationship between prothrombin activation fragment F1.2 and international normalized ratio in patients with atrial fibrillation. Stroke 1997;28:1101-1106.
15. Ostranderld JR, Brandt RL, Kjelsberg MO, Epstein FH. Electrocardiographic findings among the adult population of a total natural community, Tecumseh, Michigan. Circulation 1965;31:888-898.
16. Flegel KM, Shipley MJ, Rose G. Risk of stroke in non-rheumatic atrial fibrillation [published erratum appears in Lancet 1987;1:878]. Lancet 1987;1:526-529.
17. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 1991;22:983-988.
18. Furberg CD, Psaty BM, Manolio TA, Gardin JM, Smith VE, Rautaharju PM. Prevalence of atrial fibrillation in elderly subjects (the Cardiovascular Health Study). Am J Cardiol 1994;74:236-241.
19. Kannel WB, Abbott RD, Savage DD, McNamara PM. Coronary heart disease and atrial fibrillation: the Framingham Study. Am Heart J 1983;106:389-396.
20. Evans W, Swann P. Lone auricular fibrillation. Br Heart J 1954;16:189-194.
21. Brand FN, Abbott RD, Kannel WB, Wolf PA. Characteristics and prognosis of lone atrial fibrillation: 30-year follow-up in the Framingham Study. JAMA 1985;254:3449-3453.
22. Levy S, Maarek M, Coumel P, Guize L, Lekieffre J, Medvedowsky JL, Sebaoun A, for the College of French Cardiologists. Characterization of different subsets of atrial fibrillation in general practice in France: the ALFA study. Circulation 1999;99:3028-3035.
23. Murgatroyd FD, Gibson SM, Baiyan X, O'Nunain S, Poloniecki JD, Ward DE, Malik M, Camm AJ. Double-blind placebo-controlled trial of digoxin in symptomatic paroxysmal atrial fibrillation. Circulation 1999;99:2765-2770.
24. ACC/AHA/ESC guidelines for the management of patients with atrial fibrillation : A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines and Policy Conferences (Committee to Develop Guidelines for the Management of Patients With Atrial Fibrillation) Developed in Collaboration With the North American Society of Pacing and Electrophysiology. J Am Coll Cardiol 2001;38:1266. Full text was available on ACC (www.acc.org) Web site.
25. Psaty BM, Manolio TA, Kuller LH, Kronmal RA, Cushman M, Fried LP, White R, Furberg CD, Rautaharju PM. Incidence and risk factors for atrial fibrillation in older adults. Circulation 1997;96:2455-2461.
26. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation: a major contributor to stroke in the elderly: the Framingham Study. Arch Intern Med 1987;147:1561-1564.
27. Krahn AD, Manfreda J, Tate RB, Mathewson FA, Cuddy TE. The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba Follow-Up Study. Am J Med 1995;98:476-484.
28. Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort: the Framingham Heart Study. JAMA 1994;271:840-844.
29. Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation: analysis of pooled data from five randomized controlled trials [published erratum appears in Arch Intern Med 1994;154:2254]. Arch Intern Med 1994;154:1449-1457.
30. Hart RG, Halperin JL. Atrial fibrillation and thromboembolism: a decade of progress in stroke prevention. Ann Intern Med 1999;131:688-695.
31. Wolf PA, Dawber TR, Thomas HE Jr, Kannel WB. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: the Framingham Study. Neurology 1978;28:973-977.
32. Halperin JL, Hart RG. Atrial fibrillation and stroke: new ideas, persisting dilemmas. Stroke 1988;19:937-941.
33. Dries DL, Exner DV, Gersh BJ, Domanski MJ, Waclawiw MA, Stevenson LW. Atrial fibrillation is associated with an increased risk for mortality and heart failure progression in patients with asymptomatic and symptomatic left ventricular systolic dysfunction: a retrospective analysis of the SOLVD trials: Studies of Left Ventricular Dysfunction. J Am Coll Cardiol 1998;32:695-703.
34. Naito M, David D, Michelson EL, Schaffenburg M, Dreifus LS. The hemodynamic consequences of cardiac arrhythmias: evaluation of the relative roles of abnormal atrioventricular sequencing, irregularity of ventricular rhythm and atrial fibrillation in a canine model. Am Heart J 1983;106:284-291.
35. Clark DM, Plumb VJ, Epstein AE, Kay GN. Hemodynamic effects of an irregular sequence of ventricular cycle lengths during atrial fibrillation. J Am Coll Cardiol 1997;30:1039-1045.
36. Morillo CA, Klein GJ, Jones DL, Guiraudon CM. Chronic rapid atrial pacing: structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation. Circulation 1995;91:1588-1595.
37. Ausma J, Wijffels M, Thone F, Wouters L, Allessie MA, Borgers M. Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation 1997;96:3157-3163.
38. Sanfilippo AJ, Abascal VM, Sheehan M, Oertel LB, Harrigan P, Hughes RA, Weyman AE. Atrial enlargement as a consequence of atrial fibrillation: a prospective echocardiographic study. Circulation 1990;82:792-797.
39. Gosselink AT, Crijns HJ, Hamer HP, Hillege H, Lie KI. Changes in left and right atrial size after cardioversion of atrial fibrillation: role of mitral valve disease. J Am Coll Cardiol 1993;22:1666-1672.
40. Packer DL, Bardy GH, Worley SJ, Smith MS, Cobb FR, Coleman RE, Gallagher JJ, German LD. Tachycardia-induced cardiomyopathy: a reversible form of left ventricular dysfunction. Am J Cardiol 1986;57:563-570.
41. Grogan M, Smith HC, Gersh BJ, Wood DL. Left ventricular dysfunction due to atrial fibrillation in patients initially believed to have idiopathic dilated cardiomyopathy. Am J Cardiol 1992;69:1570-1573.
42. Philips E, Levine SA. Auricular fibrillation without other evidence of heart disease: a cause of reversible heart failure. Am J Med 1949;7:478-489.
43. Kieny JR, Sacrez A, Facello A, Arbogast R, Bareiss P, Roul G, Demangeat JL, Brunot B, Constantinesco A. Increase in radionuclide left ventricular ejection fraction after cardioversion of chronic atrial fibrillation in idiopathic dilated cardiomyopathy. Eur Heart J 1992;13:1290-1295.
44. Shinbane JS, Wood MA, Jensen DN, Ellenbogen KA, Fitzpatrick AP, Scheinman MM. Tachycardia-induced cardiomyopathy: a review of animal models and clinical studies. J Am Coll Cardiol 1997;29:709-715.
45. Weiss JN, Chen PS, Qu Z, Karagueuzian HS, Lin SF, Garfinkel A. Electrical restitution and cardiac fibrillation. J Cardiovasc Electrophysiol 2002;13:292-295.
46. Weiss JN, Garfinkel A, Karagueuzian HS, Qu Z, Chen PS. Chaos and the transition to ventricular fibrillation. A new approach to antiarrhythmic drug evaluation. Circulation 1999;99:2819-2826.
47. Priori S, Barhanin J, Hauer RN, Haverkamp W, Jongsma HJ, Kleber AG, McKenna WJ, Roden DM, Rudy Y, Schwartz K, Schwartz PJ, Towbin JA, Wilde AM. Genetic and molecular basis of cardiac arrhythmias: Recognition and management. Circulation 1999;99:518-528.
48. Luu M, Stevenson WG, Stevenson LW, Baron K, Walden J. Diverse mechanisms of unexpected cardiac arrest in advanced heart failure. Circulation 1989;80:1675-1680.
49. Wever EF, Hauer RN, Oomen A, Peters RH, Bakker PF, de Medina EOR. Unfavorable outcome in patients with primary electrical disease who survived an episode of ventricular fibrillation. Circulation 1993;88:1021-1029.
50. Meissner MD, Lehmann MH, Steinman RT, Mosteller RD, Akhtar M, Calkins H, Cannom DS, Epstein AE, Fogoros RN, Liem LB. Ventricular fibrillation in patients without significant structural disease: A multicenter experience with implantable cardioverter-defibrillator therapy. J Am Coll Cardiol 1993;21:1406-1412.
51. Moe GK. On the multiple wavelet hypothesis of atrial fibrillation. Arch Int Pharmacodyn Ther 1962;140:183-188.
52. Prinzmetal M, Corday E, Brill IC, Sellers AL, Oblath RW, Flieg WA, Kruger HE. Mechanism of the auricular arrhythmias. Circulation 1950;1:241-245.
53. Jalife J. Ventricular fibrillation: Mechanisms of initiation and maintenance. Annu Rev Physiol 2000;62:25-50.
54. Allessie MA, Lammers WJEP, Bonke FIM, Hollen J. Experimental evaluation of Moe's multiple wavelet hypothesis of atrial fibrillation, in Zipes DP, Jalife J (eds): Cardiac Arrhythmias. New York, Grune & Stratton, 1985, pp 265-276.
55. Moe GK, Rheinboldt WC, Abildskov JA. A computer model of atrial fibrillation. Am Heart J 1964;64:200-220.
56. Allessie MA, Bonke FIM, Schopman FJ. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III, The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res 1977;41:9-18.
57. Rensma PL, Allessie MA, Lammers WJEP, Bonke FIM, Schalij MJ. Length of the excitation wave as an index for the susceptibility to reentrant atrial arrhythmias in normal conscious dogs. Circ Res 1988;62:395—410.
58. Wijffels MCEF, Kirchhof CJHJ, Dorland R, Allessie MA. Atrial fibrillation begets atrial fibrillation: a study in awake chronically instrumented goats. Circulation 1995;92:1954—1968.
59. Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res 1997;81:512-525.
60. Li D, Zhang L, Kneller J, Nattel S. Potential ionic mechanism for repolarization differences between canine right and left atrium. Circ Res 2001;88:1168-1175.
61. Nattel S. New ideas about atrial fibrillation 50 years on. Nature 2002;415:219-226.
62. Riccio ML, Koller ML, Gilmour RF, Jr. Electrical restitution and spatiotemporal organization during ventricular fibrillation. Circ Res 1999;84:955-963.
63. Samie FH, Mandapati R, Gray RA, Watanabe Y, Zuur C, Beaumont J, Jalife J. A mechanism of transition from ventricular fibrillation to tachycardia: effect of calcium channel blockade on the dynamics of rotating waves. Circ Res 2000;86:684-691.
64. Coumel P. Autonomic influences in atrial tachyarrhythmias. J cardiovasc Electrophysiol 1996;7:999-1007.
65. White CW, Kerber RE, Weiss HR, Marcus ML. The effects of atrial fibrillation on atrial pressure-volume and flow relationships. Circ Res 1982;51:205-215.
66. Edwards BS, Zimmerman RS, Schwab TR, Heublein DM, Burnett JC Jr. Atrial stretch, not pressure, is the principal determinant controlling the acute release of atrial natriuretic factor. Circ Res 1988;62:191-195.
67. Spach MS. Nonuniform anisotropic cellular coupling as a basis for reentrant arrhythmias. In: DiMarco JP, Prystowsky EN, eds. Atrial Arrhythmias: State of the Art. Armonk, NY: Futura Pub, 1995:123-147.
68. Misier AR, Opthof T, van Hemel NM, Defauw JJ, de Bakker JM, Janse MJ, van Capelle FJ. Increased dispersion of "refractoriness" in patients with idiopathic paroxysmal atrial fibrillation. J Am Coll Cardiol 1992;19:1531-1535.
69. Cosio FG, Palacios J, Vidal JM, Cocina EG, Gomez-Sanchez MA, Tamargo L. Electrophysiologic studies in atrial fibrillation: slow conduction of premature impulses: a possible manifestation of the background for reentry. Am J Cardiol 1983;51:122-130.
70. Cox JL, Boineau JP, Schuessler RB, Jaquiss RD, Lappas DG. Modification of the maze procedure for atrial flutter and atrial fibrillation, I: rationale and surgical results. J Thorac Cardiovasc Surg 1995;110:473-484.
71. Cox JL, Jaquiss RD, Schuessler RB, Boineau JP. Modification of the maze procedure for atrial flutter and atrial fibrillation, II: surgical technique of the maze III procedure. J Thorac Cardiovasc Surg 1995;110:485-495.
72. Elvan A, Pride HP, Eble JN, Zipes DP. Radiofrequency catheter ablation of the atria reduces inducibility and duration of atrial fibrillation in dogs. Circulation 1995;91:2235-2244.
73. Prystowsky EN. Tachycardia-induced tachycardia: a mechanism of initiation of atrial fibrillation. In: DiMarco JP, Prystowsky EN, eds. Atrial Arrhythmias: State of the Art. Armonk, NY: Futura Pub, 1995:123-149.
74. Tsai CF, Tai CT, Hsieh MH, Lin WS, Yu WC, Ueng KC, Ding YA, Chang MS, Chen SA. Initiation of atrial fibrillation by ectopic beats originating from the superior vena cava: electrophysiological characteristics and results of radiofrequency ablation. Circulation 2000;102:67-74.
75. Bliss DF, Hutchins GM. The dorsal mesocardium and development of the pulmonary veins in human embryos. Am J Cardiovasc Pathol 1995;5:55-67.
76. Webb S, Brown NA, Wessels A, Anderson RH. Development of the murine pulmonary vein and its relationship to the embryonic venous sinus. Anat Rec 1998;250:325-334.
77. DeRuiter MC, Gittenberger-de Groot AC, Wenink AC, Poelmann RE, Mentink MM. In normal development pulmonary veins are connected to the sinus venosus segment in the left atrium. Anat Rec 1995;243:84-92.
78. Spach MS, Barr RC, Jewett PH. Spread of excitation from the atrium into thoracic veins in human beings and dogs. Am J Cardiol 1972;30:844-854.
79. Nathan H, Eliakim M. The junction between the left atrium and the pulmonary veins. An anatomic study of human hearts. Circulation 1966;34:412-422.
80. Saito T, Waki K, Becker AE. Left atrial myocardial extension onto pulmonary veins in humans: anatomic observations relevant for atrial arrhythmias. J Cardiovasc Electrophysiol 2000;11:888-894.
81. Moubarak JB, Rozwadowski JV, Strzalka CT, Buck WR, Tan WS, Kish GF, Kisiel T, Fronc HC, Maloney JD. Pulmonary veins-left atrial junction: anatomic and histological study. Pacing Clin Electrophysiol 2000; 23:1836-1838.
82. Brunton TL, Fayer J. Note on independent pulsation of the pulmonary veins and vena cava. Proc Roy Soc Lond 1876;25:174-176.
83. Ito M, Arita M, Saeki K, Tanoue M, Fukushima I. Functional properties of sinocaval conduction. Jpn J Physiol 1967;17:174-189.
84. Masani F. Node-like cells in the myocardial layer of the pulmonary vein of rats: an ultrastructural study. J Anat 1986;145:133-142.
85. Cheung DW. Electrical activity of the pulmonary vein and its interaction with the right atrium in the guinea-pig. J Physiol 1981;314:445-456.
86. Cheung DW. Pulmonary vein as an ectopic focus in digitalis-induced arrhythmia. Nature 1981;294:582-584.
87. Chen YJ, Chen SA, Chang MS, Lin CI. Arrhythmogenic activity of cardiac muscle in pulmonary veins of the dog: implication for the genesis of atrial fibrillation. Cardiovasc Res 2000;48:265-273.
88. Chen YJ, Chen SA, Chen YC, Yeh HI, Chan P, Chang MS, Lin CI. Effects of rapid pacing on the arrhythmogenic activity of single cardiomyocytes from pulmonary veins. Implication in initiation of atrial fibrillation. Circulation 2001;104:2849-2854.
89. Marshall J. On the development of the great anterior veins in man and mammalia: including an account of certain remnants of foetal structure found in the adult, a comparative view of these great veins in the different mammalia, and an analysis of their occasional peculiarities in the human subject. Phil Trans R Soc Lond 1850;140:133-169.
90. Scherlag BJ, Yeh BK, Robinson MJ. Inferior interatrial pathway in the dog. Circ Res. 1972;31:18-35.
91. Doshi RN, Wu TJ, Yashima M, Kim YH, Ong JJC, Cao JM, Yashar P, Fishbein MC, Karagueuzian HS, Chen PS. Relation between ligament of Marshall and adrenergic atrial tachyarrhythmia. Circulation 1999;100:876-883.
92. Kim DT, Lai AC, Hwang C, Fan LT, Karagueuzian HS, Chen PS, Fishbein MC. The ligament of Marshall: a structural analysis in human hearts with implications for atrial arrhythmias. J Am Coll Cardiol 2000;36:1324-1327.
93. Chen YJ, Chen YC, Yeh HI, Lin CI, Chen SA. Electrophysiology and arrhythmogenic activity of single cardiomyocytes from canine superior vena cava. Circulation 2002;105:2679-2685.
94. Fieguth HG, Wahlers T, Borst HG. Inhibition of atrial fibrillation by pulmonary vein isolation and auricular resection: experimental study in a sheep model. Eur J Cardio-Thorac Surg 1997;11:714-721.
95. Skanes AC, Mandapati R, Berenfeld O, Davidenko JM, Jalife J. Spatiotemporal periodicity during atrial fibrillation in the isolated sheep heart. Circulation 1998;98:1236-1248.
96. Mandapati R, Skanes A, Chen J, Berenfeld O, Jalife J. Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation 2000;101:194-199.
97. Harada A, Konishi T, Fukata M, Higuchi K, Sugimoto T, Sasaki K. Intraoperative map guided operation for atrial fibrillation due to mitral valve disease. Ann Thorac Surg 2000;69:446-451.
98. Naito S, Tada H, Fukazawa H, Kubota S, Hoshizaki H, Oshima S, Taniguchi K, Kaneko T. The effects of the only cryoablation to four pulmonary vein orifices for chronic atrial fibrillation during mitral valve surgery (abstract). Pacing Clin Electrophysiol 2000;23(II):694.
99. Sueda T, Imai K, Orihashi K, Watari M, Okada K. Pulmonary vein orifice isolation for elimination of chronic atrial fibrillation. Ann Thorac Surg 2001;71:708-710.
100. Williams MR, Stewart JR, Bolling SF, Freeman S, Anderson JT, Argenziano M, Smith CR, Oz MC. Surgical treatment of atrial fibrillation using radiofrequency energy. Ann Thorac Surg 2001;71:1939-1944.
101. Pappone C, Rosanio S, Oreto G, Tocchi M, Gugliotta F, Vicedomini G, Salvati A, Dicandia C, Mazzone P, Santinelli V, Gulletta S, Chierchia S. Circumferential radiofrequency ablation of pulmonary vein ostia. A new anatomic approach for curing atrial fibrillation. Circulation 2000;102:2619-2628.
102. Kumagai K, Yasuda T, Tojo H, Noguchi H, Matsumoto N, Nakashima H, Gondo N, Saku K. Role of rapid focal activation in the maintenance of atrial fibrillation originating from the pulmonary veins. Pacing Clin Electrophysiol 2000;23:1823-1827.
103. Zaitsev AV, Berenfeld O, Mironov SF, Jalife J, Pertsov AM. Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart. Circ Res 2000;86:408-417.
104. Jalife J, Berenfeld O, Skanes A, Mandapati R. Mechanisms of atrial fibrillation: mother rotors or multiple daughter wavelets, or both? J Cardiovasc Electrophysiol 1998;9:S2-S12.
105. Chen J, Mandapati R, Berenfeld O, Skanes AC, Jalife J. High-frequency periodic sources underlie ventricular fibrillation in the isolated rabbit heart. Circ Res 2000;86:86-93.
106. Samie FH, Berenfeld O, Anumonwo J, Mironov SF, Udassi S, Beaumont J, Taffet S, Pertsov AM, Jalife J. Rectification of the background potassium current. A determinant of rotor dynamics in ventricular fibrillation. Circ Res 2001;89:1216-1223.
107. Berenfeld O, Zaitsev AV, Mironov SF, Pertsov AM, Jalife J. Frequency- dependent breakdown of wave propagation into fibrillatory conduction across the pectinate muscle network in the isolated sheep right atrium. Circ Res 2002;90:1173-1180.
108. Karma A. Electrical alternans and spiral wave breakup in cardiac tissue. Chaos 1994;4:461-472.
109. Weiss JN, Chen PS, Qu Z, Karagueuzian HS, Garfinkel A. Ventricular fibrillation: How do we stop the waves from breakup? Circ Res 2000;87:1103-1107.
110. Koller ML, Riccio ML, Gilmour RF. Dynamic restitution of action potential during electrical alternans and ventricular fibrillation. Am J Physiol 1998;275:H1635-H1642.
111. Simson MB, Spear JF, Moore EN. Stability of an experimental atrioventricular reentrant tachycardia in dogs. Am J Physiol 1981;240:H947-H953.
112. Frame LH, Simson MB. Oscillations of conduction, action potential duration, and refractoriness: a mechanism for spontaneous termination of reentrant tachycardias. Circulation 1988;78:1277-1287.
113. Courtemanche M, Glass L, Keener J. Instabilities of a propagating pulse in a ring of excitable media. Physiol Rev Lett 1993;70:2182-2185.
114. Qu Z, Weiss JN, Garfinkel A. Spatiotemporal chaos in a simulating ring of cardiac cells. Physiol Rev Lett 1997;78:1387-1390.
115. Luo CH, Rudy Y. A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction. Circ Res 1991;68:1501-1526.
116. Luo CH, Rudy Y. A dynamical model of the cardiac ventricular action potential, I: simulations of ionic currents and concentration changes. Circ Res 1994;74:1071-1096.
117. Saitoh H, Bailey JC, Surawicz B. Action potential duration alternans in dog Purkinje and ventricular muscle fibers: further evidence in support of two different mechanisms. Circulation 1989;80:1421-1431.
118. Nolasco JB, Dahlen RW. A graphic method for the study of alternation in cardiac action potentials. J Appl Physiol 1968;25:191-196.
119. Karagueuzian HS, Khan SS, Hong K, Kobayashi Y, Denton T, Mandel WJ, Diamond GA. Action potential alternans and irregular dynamics in quinidine-intoxicated ventricular muscle cells. Implications for ventricular proarrhythmia. Circulation 1993;87:1661-1672.
120. Garfinkel A, Kim YH, Voroshilovsky O, Qu Z, Kil JR, Lee MH, Karagueuzian HS, Weiss JN, Chen PS. Preventing ventricular fibrillation by flattening cardiac restitution. Proc Natl Acad Sci USA 2000;97:6061-6066.
121. Lee MH, Lin SF, Ohara T, Omichi C, Okuyama Y, Chudin E, Garfinkel A, Weiss JN, Karagueuzian HS, Chen PS. Effects of diacetyl monoxime and cytochalasin D on ventricular fibrillation in swine right ventricles. Am J Physiol 2001;280:H2689-H2696.
122. Wu TJ, Yashima M, Doshi R, Kim YH, Athill CA, Ong JJC, Czer L, Trento A, Blanche C, Kass RM, Garfinkel A, Weiss JN, Fishbein MC, Karageuezian HS, Chen PS. Relation between cellular repolarization characteristics and critical mass for human ventricular fibrillation. J Cardiovasc Electrophysiol 1999;10:1077-1086.
123. Cao JM, Qu Z, Kim YH, Wu TJ, Garfinkel A, Weiss JN, Karagueuzian HS, Chen PS. Spatiotemporal heterogeneity in the induction of ventricular fibrillation by rapid pacing: importance of cardiac restitution properties. Circ Res 1999;84:1318-1331.
124. Kim BS, Kim YH, Hwang GS, Pak HN, Lee SC, Shim WJ, Oh DJ, Ro YM. Action potential duration restitution kinetics in human atrial fibrillation. J Am Coll Cardiol 2002;39:1329—1336.
125. Narayan SM, Bode F, Karasik PL, Franz MR. Alternans of atrial action potentials during atrial flutter as a precursor to atrial fibrillation. Circulation 2002;106:1968-1973.
126. Xie F, Gu Z, Garfinkel A, Weiss JN. Electrical refractory period restitution and spiral wave reentry in simulated cardiac tissue. Am J Physiol 2002;283:H448-H460.
127. Li H, Hare J, Mughal K, Krum D, Biehl M, Deshpande S, Dhala A, Blanck Z, Sra J, Jazayeri M, Akhtar M. Distribution of atrial electrogram types during atrial fibrillation: effect of rapid atrial pacing and intercaval junction ablation. J Am Coll Cardiol 1996;27:1713-1721.
128. Lee SH, Lin FY, Yu WC, Cheng JJ, Kuan PL, Hung CR, Chang MS, Chen SA. Regional differences in the recovery course of tachycardia-induced changes of atrial electrophysiological properties. Circulation 1999;99:1255-1264.
129. Bonometti C, Hwang C, Hough D, Lee JJ, Fishbein MC, Karagueuzian HS, Chen PS. Interaction between strong electrical stimulation and reentrant wavefronts in canine ventricular fibrillation. Circ Res 1995;77:407-416.
130. Lee JJ, Kamjoo K, Hough D, Hwang C, Fan W, Fishbein MC, Bonometti C, Ikeda T, Karagueuzian HS, Chen PS. Reentrant wave fronts in Wiggers' stage II ventricular fibrillation: characteristics, and mechanisms of termination and spontaneous regeneration. Circ Res 1996;78:660-675.
131. Jayachandran JV, Sih HJ, Winkle W, Zipes DP, Hutchins GD, Olgin JE. Atrial fibrillation produced by prolonged rapid atrial pacing is associated with heterogeneous changes in atrial sympathetic innervation. Circulation 2000;101:1185-1191.
132. Wu TJ, Yashima M, Xie F, Kim YH, Fishbein MC, Qu Z, Garfinkel A, Weiss JN, Karagueuzian HS, Chen PS. Role of pectinate muscle bundles in the generation and maintenance of intra-atrial reentry: potential implications for the mechanism of conversion between atrial fibrillation and atrial flutter. Circ Res 1998;83:448-462.
133. Zhou S, Chang CM, Wu TJ, Miyauchi Y, Hamabe A, Omichi C, Hayashi H, Brodsky LA, Mandel WJ, Ting CT, Fishbein MC, Karagueuzian HS, Chen PS. Nonreentrant focal activations in pulmonary veins in a canine model of sustained atrial fibrillation. Am J Physiol 2002;283: H1244-H1252.
134. Oral H, Ozaydin M, Tada H, Chugh A, Scharf C, Hassan S, Lai S, Greenstein R, Pelosi F, Jr, Knight BP, Strickberger SA, Morady F. Mechanistic significance of intermittent pulmonary vein tachycardia in patients with atrial fibrillation. J Cardiovasc Electrophysiol 2002;13:645-650.
135. Oral H, Knight BP, Ozaydin M, Chugh A, Lai SWK, Scharf C, Hassan S, Greenstein R, Han JD, Pelosi F, Jr, Strickberger SA, Morady F. Segmental ostial ablation to isolate the pulmonary veins during atrial fibrillation. Feasibility and mechanistic insights. Circulation 2002;106:1256-1262.
136. Wu TJ, Liang KW, Ting CT. Relation between rapid focal activation in the pulmonary vein and the maintenance of paroxysmal atrial fibrillation. Pacing Clin Electrophysiol 2001;24:902-905.
137. Gurevitz O, Friedman, PA. Pulmonary vein exit-block during radio-frequency ablation of paroxysmal atrial fibrillation. Circulation 2002;105:e124.
138. Knight BP, Oral H, Morady F. Paroxysmal fibrillation in an isolated pulmonary vein. Circulation 2002;106:1426-1427.
139. Wu TJ, Ong JJC, Chang CM, Doshi RN, Yashima M, Huang HLA, Fishbein MC, Ting TC, Karagueuzian HS, Chen PS. Pulmonary veins and ligament of Marshall as sources of rapid activations in a canine model of sustained atrial fibrillation. Circulation 2001;103:1157-1163.
140. Wu TJ, Doshi RN, Huang HLA, Blanche C, Kass RM, Trento A, Cheng W, Karagueuzian HS, Peter CT, Chen PS. Simultaneous biatrial computerized mapping during permanent atrial fibrillation in patients with organic heart diseases. J Cardiovasc Electrophsiol 2002;13:571-577.
141. Kadish AH. Mechanism(s) of chronic atrial fibrillation. J Cardiovasc Electrophsiol 2002;13:578-579.
142. Horackova M. The effect of D600 on tonic tension, Na+ inward current, and Na+-Ca2+ exchange in frog heart. Can J Physiol Pharmacol 1985;63:1404-1410.
143. Ikeda T, Uchida T, Hough D, Lee JJ, Fishbein MC, Mandel WJ, Chen PS, Karagueuzian HS. Mechanism of spontaneous termination of functional reentry in isolated canine right atrium: Evidence for the presence of an excitable but nonexcited core. Circulation 1996;94:1962-1973.
144. Lin SF, Abbas RA, Wikswo JP, Jr. High-resolution high-speed synchronous epifluorescence imaging of cardiac activation. Rev Sci Instrum 1997;68:213-217.
145. Wu TJ, Bray MA, Ting CT, Lin SF. Stable bound pair of spiral waves in rabbit ventricles. J Cardiovasc Electrophysiol 2002;13:414.
146. Chorro FJ, Canoves J, Guerrero J, Mainar L, Sanchis J, Such L, López-Merino V. Alteration of ventricular fibrillation by flecainide, verapamil, and sotalol: an experimental study. Circulation 2000;101:1606-1615.
147. Wu TJ, Ong JJC, Hwang C, Lee JJ, Fishbein MC, Czer L, Trento A, Blanche C, Kass RM, Mandel WJ, Karagueuzian HS, Chen PS. The characteristics of wave fronts during ventricular fibrillation in patients with dilated cardiomyopathy: Role of increased fibrosis in the generation of reentry. J Am Coll Cardiol 1998; 32: 187-196.
148. Rogers JM, Huang J, Smith WM, Ideker RE. Incidence, evolution, and spatial distribution of functional reentry during ventricular fibrillation in pigs. Circ Res 1999;84:945-954.
149. Choi BR, Liu T, Salama G. The distribution of refractory periods influences the dynamics of ventricular fibrillation. Circ Res 2001;88(5):E49-E58.
150. Choi BR, Liu T, Salama G. Ventricular fibrillation: Mother rotor or multiple wavelets? Circ Res 2001;89(4):E30.
151. Berenfeld O, Pertsov AM, Jalife J. What is the organization of waves in ventricular fibrillation? Circ Res 2001;89(3):E22.
152. Kurz RW, Ren XL, Franz MR. Dispersion and delay of electrical restitution in the globally ischaemic heart. Eur Heart J 1994;15(4):547-554.
153. Mandapati R, Asano Y, Baxter WT, Gray R, Davidenko J, Jalife J. Quantification of effects of global ischemia on dynamics of ventricular fibrillation in isolated rabbit heart. Circulation 1998;98:1688-1696.
154. Wu TJ, Lin SF, Weiss JN, Ting CT, Chen PS. Two types of ventricular fibrillation in isolated rabbit hearts. Importance of excitability and action potential duration restitution. Circulation 2002;106:1859-1866.
155. Wiggers CJ. The mechanism and nature of ventricular fibrillation. Am Heart J 1940;20:399-412.
156. Chen PS, Wu TJ, Hwang C, Zhou S, Okuyama Y, Hamabe A, Miyauchi Y, Chang CM, Chen LS, Fishbein MC, Karagueuzian HS. Thoracic veins and the mechanisms of non-paroxysmal atrial fibrillation. Cardiovasc Res 2002;54:295-301.
157. Rubart M, Zipes DP. Genesis of cardiac arrhythmias: Electrophysiological consideration. In: Heart Disease, 6th edition, edited by Braunwald E, Zipes DP, Libby P. 2001, chapter 22.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔