(3.238.96.184) 您好!臺灣時間:2021/05/15 06:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蔡昀達
研究生(外文):Yun-Ta Tsai
論文名稱:以氧電漿處理於濺鍍成長鈦酸鍶鋇薄膜之研究
論文名稱(外文):A Study of O2 Plasma Treatment on RF Sputtered Barium Strontium Titanate Thin Films
指導教授:陳世志陳世志引用關係
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:166
中文關鍵詞:射頻磁控濺鍍鈦酸鍶鋇氧電漿介電層
外文關鍵詞:RF Magnetron Sputtering、Barium Strontium Titana
相關次數:
  • 被引用被引用:2
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
當前製程技術即將推進至奈米階段(Gbit級的DRAMs),勢必將以高介電薄膜作為閘極氧化層及MIM電容的介電層。本研究對鈦酸鍶鋇的多層與不同處理的MIM結構加以研究,獲致高品質的高介電薄膜,因此本研究即以最佳的薄膜製程技術為基礎,研製以BST為介電層的MIM電容元件。本研究採用具有加溫與re-sputtering功能的射頻磁控濺鍍系統及低壓高溫成長系統來成長高介電薄膜,並對薄膜進行物性及電性的量測與分析。
實驗中,備製Al/(Ba0.5Sr0.5)TiO3/Pt/Ti/SiO2/Si的MIM電容,在成長完厚度約為150nm的BST薄膜後,經XRD量測發現,若BST薄膜隨著溫度的增加,其晶相會越趨明顯,使得薄膜呈多晶形狀態。
根據C-V及I-V量測,厚度150nm之 BaSrTiO3薄膜經事前氧電漿處理15分鐘後,其介電常數約為149,漏電流密度在正偏壓1.5V時可達2.49 x10-9A/cm2。厚度150nm之 BaSrTiO3 膜經事後氧電漿處理20分鐘後,其介電常數約為178,而漏電流密度在正偏壓1.5V時可達2.22x10-9A/cm2。而厚度150nm之 BaSrTiO3膜經事前氧電漿處理5分鐘和事後氧電漿處理15分鐘後,其介電常數約為185,正偏壓1.5V時的漏電流密度可達8.96x10-9A/cm2 而在負偏壓1.5V時的漏電流則為3.03x10-8A/cm2。
The semiconductor fabricating technologies will be promoted to nanometer scale, such as Gbit-scaled DRAMs, in the near future. The high-k thin films will be applied as dielectrics of MIM capacitors. We have studies of BaSrTiO3 for MIM structures. In this study, the main investigations will be focused on MIM capacitors by using BST thin films, as dielectics. These high dielectrics thin films will be grown by using RF magnetic controlled sputtering system with functions of heated-substrate and re-sputtering. The electrical and physical properties of the deposited Barium Strontium Titanate thin films were investigated.

In this study, the application of Al/BST/Pt/Ti/SiO2/Si for Metal-Insulator- Metal (MIM) capacitors were investigated. After the XRD measured, addition of temperature to the BST films enhance crystallization and exhibits a polycrystalline structure.

To base on C-V and I-V measurement, when as-deposition BST films were treated with pre-oxygen plasma for 15 minutes, it’s relative dielectric constant was obtained about 149. It was also found that the leakage current densities were measured about 2.49×10-9 A/cm2 at positive applied voltages of 1.5 V. When as-deposition BST films were treated with post-oxygen plasma for 20 minutes, it’s relative dielectric constant was obtained about 178. It was also found that the leakage current densities were measured about 2.22×10-9 A/cm2 at positive applied voltages of 1.5 V. When as-deposition BST films were treated with pre-oxygen plasma for 5 minutes and post-oxygen plasma for 15 minutes, it’s relative dielectric constant was obtained about 185. It was also found that the leakage current densities were measured about 8.96×10-9 A/cm2 and 3.03×10-8 A/cm2 at positive and negative applied voltages of 1.5 V, respectively.
目 錄
頁次
中文摘要……………………………………………………………………………….….….i
英文摘要…………………………………………………………………………….….……ii
誌謝…………………………………………………………………………….............……iii
目錄………………………………………………………………………………….……....iv
表目錄……………………………………………………………………………..………..vii
圖目錄…………………………………………………………………………….....……..viii

一、緒論
1-1研究背景與目的………………………...………………..………...………………..1
1-2 DRAM的發展………………………...……………………………………………..3
1-3高介電材料之開發……….……………………………...…………………………..5
1-4研究方向……….……………………………...……………………………………..7
1-4-1熱退火(annealing)之研究…….……………………………………………….7
1-4-2電漿處理(plasma treatment)之研究……………………………………..……7
1-4-3兩段式氧電漿處理(Two-step O2 plasma treatment)之研究………………… 8
1-4-4兩段式沉積(Two-step deposition)之研究……………………….……………8

二、基本理論與文獻回顧
2-1 基本理論…...………………………………………………………...…..…………9
2-1-1鈦酸鍶鋇(Ba,Sr)TiO3材料的特性…….…………………………………….9
2-1-2 介質極化……………………………………………………………...…..…10
2-1-3 退火(Annealing)…………………………………………………...………..13
2-1-4 介電破壞…………………………………………………………….………13
2-1-5 射頻濺鍍原理…….………………………………………...……………….14
2-1-6 交流式電漿……….…….…………………………………..………...…..…15
2-1-7 介電損失……….…….…………………………………..………...…..…17
2-2 文獻回顧……………………………………..…...…………………………18


三、實驗步驟
3-1 MIM電容結構製作簡介…….…………………………………………………..27
3-1-1 RCA化學清洗…….….……………………………………………………...27
3-1-2高溫成長二氧化矽層……………………………………………….……….28
3-1-3附著層電極及下電極的成長………………………………….…………….28
3-1-4成長薄膜前的化學清洗……………………………………….…………….28
3-1-5成長高介電薄膜……………………………….…………………………….29
3-1-6 O2 和N2O plasma 處理…………………………………………...………30
3-1-7 熱退火處理………………………………………………………………..30
3-1-8 成長上電極………………………………………………………...………..30
3-1-9 蒸鍍罩(shadow Metal Mask)………………………………………………30
3-2電性量測…………………………………………………………………....31
3-2-1 I-V量測………………………………………………………….…..31
3-2-2 C-V量測……….………………………………………………….…31
3-3物性量測……………….………………………………………………..….31
3-3-1 AFM……………………………………………………………..…..31
3-3-2 XRD………………………………………………………………….32
3-3-3 AES…………………………………………………………………..33
3-3-4 SEM………………………………………………………………….33
3-3-5 TEM……………………………………………………………….…34

四、結果與討論
4-1濺鍍氣體O2/Ar 的比例關係…….....………………………….……..………..…..37
4-2不同的工作壓力……………………………………………………………......…..44
4-3不同的基板溫度…….....……………………………..…………………….…..…..50
4-4熱退火溫度對薄膜的影響……………………………….………………….....…..56
4-5事前氧電漿處理…….....……………………………..…………………………..…..62
4-6事後氧電漿處理……………………………………………………….....…………..68
4-7兩階段氧電漿處理…….....……………………………..……………….……..…..74

4-8兩階段氧電漿經過不同熱退火溫度處理………………………………….......….84
4-9 N2O電漿處理…….....……………………………..………………………..…..….88
4-10兩階段沉積方式………………………………………………………............…..94
4-11多層式沉積法………………………………………………………...............….100

五、漏電流機制與介電可調度
5-1 漏電機制簡介…………………………………………………….……….106
5-1-1蕭基發射(Schocttky Emission)…….………………………………………106
5-1-2普爾-法蘭克(Pool-Frenkel)效應…………………….…………...…...……108
5-1-3實驗結果討論…………..………….…………………….…………………..110
5-2介電可調度……………………………………………………………....……….112
六、結論與未來研究方向
6-1 結論………..……………………………………….…………………..…140
6-2 未來研究方向….……..……………………………………………………141
6-2-1 Multi-layer 結構對BST薄膜應用於元件的影響…………….…..………141
6-2-2 BST薄膜成長於MIS結構上……………………..……………………….141

參考文獻………………………………………………….…………………..……...…...…142
參考文獻
[1]R. H. Dennard, "Field effect transistor memory," U. S. Patent 3, 387,286, granted June 4, 1968.
[2]S.Ezhilvalavan, Tseung-Yuen Tseng, “Progress in the developments of (Ba,Sr)TiO3 (BST) thin dilm for Gigabit era DRAMs”, Materials Chemistry and Physics, 65 (2000), pp 227-248.
[3]H. Sunami, T. Kure, N. Hashimoto, K. Itoh, T. Toyabe, and S. Asai, "A corrugated capacitor cell (CCC) for megabit dynamic MOS memories," in EDM Tech. Dig., 1982,p.806.
[4]M.Sakamoto, T.Katoh, H.Abiko, T.Shimizu, H.Mikoshiba, Y.Hokari, K.Hamono, and K. Kobayashi, "Buried storage electrode cell for megabit DRAMs," in IEDAI Tech. Dig., 1985, p. 71 1.
[5]W. F. Richardson, D. M. Bordelon, G. P. Pollack, A. H. Shah, S. D. S. Malhi, H. Shichijo, S. K. Banerjee, M. Elahy, R. H. Womack, C. P. Wang, J. Gallia, H. E. Davis, and P. K. Chatterjee, "A trench transistor cross-point DRAM cell," in IEDM Tech. Dig., 1985, p. 714.
[6]N. Lu, P. Cottrell, W. Craig, S. Dash, D. Critchlow, and R. Mohler, B. Machesney, T. Ning, W. Noble, R. Parent, R. Scheuerlein, E. Sprogis, and L. Tennan, "The SPT cella new substrate plate trench cell for DRAMs," in IEDM Tech. Dig., 1985, p. 77 1.
[7]M. Yanagisawa, K. Nakamura, and M. Kikuchi, "Trench transistor cell with selfaligned contact for megabit MOS DRAM," in IEDM Tech. Dig., 1986, p. 13.
[8]M. Taguchi, S. Ando, N. Higaki, G. Goto, T. Ema, K. Hashimoto, T. Yabu, and T. Nakano, "Dialectically encapsulated trench capacitor cell," in IEDM Tech. Dig., 1986, p. 135.
[9]W. M. Smith, "Vertical one-device memory cell," IBM Technical Disclosure Bulletin, p.3585,1973.
[10]M. Koyanagi, H. Sunami, N. Hashimoto, and M. Ashikawa, "Novel high density stacked capacitor MOS RAM," in IEDM Tech. Dig., 1978, p. 348.
[11]M. Koyanagi, Y. Sakai, M. Ishihara, M. Tazunoki, and N. Hashimoto, "A 5V only 16kb stacked capacitor MOS RAM," IEEE Journal of Solid State Circuits, vol. 15, p. 661,1980.
[12]Y. Takemae, T. Ema, M. Nakano, F. Baba, T. Yabu, K. Miyasaka, and K. Shirai, "A IMb DRAM with 3-dimensional stacked capacitor cells," in ISSCC Dig. Papers, 1985,p.250.
[13]H. Shinriki, T. Kisu, S. 1. Kimura, Y. Nishioka, Y. Kawamoto, and K. Mukai, "Promising storage capacitor structures with thin Ta2O5 film for low-power highdensity DRAM's," IEEE Trans. Electron Devices, vol. 37, p. 1939, 1990.
[14]K. Itoh, "Trends in megabit in DRAM circuit design," IEEE Journal of Solid State Circuits, vol. 25, p. 778, 1990.
[15]G. Bronner, "DRAM technology trends for 256Mb and beyond," in International Electron Devices and Materials Symposium, Hsinchu, 1996, p. 75.
[16]劉台徽 ”Giga bit DRAM 世代的High-k材料的最新技術動向”, 電子月刊, 7卷, 9期, p166.
[17]彭成鑑 〝強介電陶瓷材料在動態隨機記憶體上的應用〞, 工業材料, 107期, P72, 民84.
[18]汪建明,1999,"Ceramic techonlogy handbook",中華民國產業科技發展協進會,中華名國粉末治金協會,頁403-430,六月。
[19]鄭晃忠,1999,"極大型積體電路之鐵電材料",電子月刊,第五卷第六期,頁94-103,六月。
[20]邱碧秀,1996,電子陶瓷材料,科學圖書大庫,徐氏基金會,台北。
[21]魏炯權,1993,電工材料,全華,台北。
[22]莊達人,“VLSI製造技術”,高立圖書,1995。
[23]傅勝利,1995,電子材料,再版,全華,台北。
[24]S. M. Sze, 1988, VLSI Technology, McGraw Hill.
[25]Koyama, et al., Proceeding of 3rd Symposium on plasma, ECS, Vol. 82-6.
[26]F.Jansen, 1990 ,“AVS Short Course: PECVD”, American Vacuum Society.
[27]Matsuda et al., 1984 , Japanese Journal of Applied Physics, Vol. 23, L 567.
[28]Deok-Sin Kil, Byung-Il Lee, Seung-Kj Joo, “Effect of deposition conditions of buffer layer on the characteristics of (Ba,Sr)TiO3 thin films fabricated by a self-buffering process”, Thin Solid Film, 1999, 343-344, pp 453-456.
[29]Hag-Ju Cho, Sejun Oh, Chang Seok Kang, “Improvement of leakage current characteristics of Ba0.5Sr0.5TiO3 films by N2O plasma surface treatment”, Appl. Phys. Lett., 1997, Vol. 71, No. 22, 1, pp 3221-3223.
[30]Kulwicki, Bernard M., Tsu, Robert, “Barium strontium titanate (BST) thin films using boron”, United States Patent, 1997.
[31]Cheol Seong Hwang, Suk Ho Joo, “Variations of the leakage current density and the dielectric constant of Pt/(Ba,Sr)TiO3/Pt capacitors by annealing under a N2 atmosphere”, Journal of Applied Physics, 1999, Vol. 85, No. 4, pp 2431-2436.
[32]Zhiqiang Wei, Huping Xu, Minoru Noda, Masanori Okuyama, "Preparation of BaxSr1-xTiO3 thin films with seeding layer by a sol-gel method, " Journal of Crystal Growth 237-239, 2002, p443-447.
[33]Jaemo Im, O. Auciello, S.K. Streiffer, "Layered (BaxSr1-x)Ti1+yO3+z thin films for high frequency tunable devices, " Thin Solid Films 413, 2002, p243-247.
[34]汪建民,“材料分析”,中國材料科學學會,1998。
[35]謝詠芬,“穿透式電子顯微鏡分析技術在積體電路製造上的應用”,科儀新知第十七卷第三期,p.12-p.28。
[36]Cheol Seong Hwang, et al. “Depletion layer thickness and Schottky type carrier injection at the interface between Pt electrodes and (Ba, Sr)TiO3 thin films”, J. Appl. Phys. ,Vol. 85, Number 1 ,1999, p.287-p.295
[37]P. C. Joshi and M. W. Cole “Influence of post-deposition annealing on the enhanced structural and electrical properties of amorphous and crystalline Ta2O5 thin films for dynamic random access memory applications”, Journal of Applied Physics ,1999 Volume 86, Issue 2, p.871-p.880
[38]L.C.Sengupta, S.Sengupta, IEEE Trans. Ultrasonics Ferroelectr.Fr equency Control 44 (1997) 792.
[39]K.M. Johnson, J.Appl.Phys. 33 (1962) 2826.F.W. Van Keuls, R.R. Romanofsky, N.D. Varalijay, F.A. Miranda,C.L. Candey, S. Aggarwal, T. Venkatesan, R. Ramesh, Microwave Opt.T echnol. Lett. 20 (1999) 53.
[40]F.A. Miranda, R. Romanofsky, F.W. Van Keuls, C.H. Mueller,R.E.T reece, T.E.Rivkin, Integr.Ferr oelectr. 17 (1998) 231.
[41]J.M. Ponds, S.W. Kirchoeffer, W. Chang, J.S. Horwitz, D.B.Chrisey, Integr.Ferr oelectr. 22 (1998) 317.
[42]W.J. Kim, W. Chang, S.B. Qadri, J.M. Pond, S.W. Kirchoefer,J.S. Horwitz, D.B. Chrisey, Appl. Phys. A 70 (2000) 313.
[43]C.M. Carlson, T.V. Rivkin, P.A. Parilla, J.D. Perkins, D.S.Ginley, A.B. Kozyrev, V.N. Oshadchy, A.S. Pavlov, Appl. Phys.Lett.76 (2000) 1920.
[44]W. Chang, J.S. Horwitz, A.C. Carter, J.M. Pond, S.W. Kirchoefer,C.M. Gillmore, D.B. Chrisey, Appl.Phys.Lett.74 (1999)1033.
[45]J.C.Slater , Phys.Rev . 78 (1950) 748.
[46]Q.X. Jia, J.R. Groves, P. Arendt, Y. Fan, A.T. Findikoglu, S.R.Foltyn, H. Jiang, F.A.Miranda, Appl.Phys. Lett.74 (1999)1564.
[47]P.C. Joshi, M.W. Cole, Appl. Phys. Lett. 77 (2000) 289.
[48]F.W. Van Keuls, R.R. Romanofsky, N.D. Varalijay, F.A. Miranda,C.L. Candey, S. Aggarwal, T. Venkatesan, R. Ramesh,Microwave Opt.T echnol. Lett. 20 (1999) 53.
[49]Chung Ming Chu and Pang Lin, "Electrical properties crystal structure of (Ba, Sr)TiO3 films prepared at low temperatures on a LaNiO3 electrode by radio-frequency magnetron sputtering", Appl. Phys. Lett., vol. 70, p. 249, 1997.
[50]Ching-Chich Leu, Shih-Hsiung Chan, Haur-Ywh Chen, “Effects of O2 plasma treatment on the electric and dielectric characteristics of Ba0.7Sr0.3TiO3 thin films”, Microelectronics Reliability, 2000, 40, pp 679-682.
[51]R.H. Horng, D.S. Wuu, C.C. Leu, “Effects of fluorine-implanted treatment on Ba0.7Sr0.3TiO3 films”, Microelectronics Reliability, 2000, 40, pp 667-670.
[52]R.H. Horng, D.S. Wuu, C.C. Leu, “Ion-implanted treatment of (Ba,Sr)TiO3 films for DRAM applications”, Journal of Non-Crystalline Solids, 2001, 280, pp 48-53.
[53]San-Yuan Chen, Hong-Wen Wang, Li-Chi Huang, "Role of an intermediate phase (Ba,Sr)2Ti2O5CO3 in doped (Ba0.7Sr0.3)TiO3 thin films," Materials Chemistry and Physics 77, 2002, P632-638.
[54]姚俊敏, ”閘極氧化層製程發展新趨勢”, 電子月刊, 第八卷第九期, p. 142-154, 民91.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top