(3.238.130.97) 您好!臺灣時間:2021/05/18 09:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:羅時湧
研究生(外文):Shih-Yung Lo
論文名稱:低介電常數材料之製程整合研究
論文名稱(外文):Study on Process Integration of Low Dielectric Constant Materials
指導教授:林堅楊林堅楊引用關係張鼎張
指導教授(外文):Jian-Yang LinTing-Chang Chang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:69
中文關鍵詞:低介電常數材料
外文關鍵詞:low dielectric constant materials
相關次數:
  • 被引用被引用:3
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
隨著元件尺寸的縮小,元件速度主要受限於金屬訊號連線間傳送時間的延遲。為了改善此問題,本論文利用低介電常數材料來降低金屬連線中的電容值,進而降低時間延遲以增進元件的工作效率。本篇論文研究的低介電常數材料SiOC及SiOCF是利用電漿輔助化學氣相沉積法製備完成,本論文內容主要針對SiOC及SiOCF其基本特性、熱穩定性以及各種電漿處理對材料的影響加以探討。首先,在熱穩定上,SiOCF比SiOC有較佳的熱穩定性,其熱穩定性可達500℃。在製程整合方面,電漿的使用是非常廣泛的;眾所皆知的,低介電常數材料容易受光阻去除過程中使用氧電漿灰化處理而破壞其介電特性。實驗中我們對材料施以氧電漿處理,發現氧電漿會破壞材料本身而導致吸水,而材料在吸水後的漏電機制主要由離子傳導主控。另外氨電漿處理因為離子轟擊的效應而對材料有些許破壞;而氫電漿的處理對SiOC有改善的作用,其對薄膜表面的斷鍵有覆蓋的作用,降低薄膜吸水的機率而有改善的效果。另外,在銅製程的整合,銅會擴散到低介電常數材料裡,我們利用BTS的方法迫使銅加速擴散至材料裡,藉以探討低介電常數材料SiOC及SiOCF的劣化。論文結果發現SiOC及SiOCF在經過150oC,1MV/cm,1000 Sec的BTS之後,漏電流依然維持在10-9的數量級,這表示SiOC及SiOCF有極佳的抗銅性。
As the devices scale down, performance of devices is dominated by propagation delay between metal interconnections. In order to improve this issue, in this thesis, a low dielectric constant material is used to reduce the capacitance between metal interconnections and decrease the RC time delay that enhance the performance of devices. In this study, the low dielectric constant materials-SiOC and SiOCF were prepared by plasma enhanced chemical vapor deposition. We focus on the intrinsic characteristics、thermal stability and effects after various kinds of plasma treatments. In thermal stability, SiOCF film has better thermal stability up to 500℃ than SiOC film. In process integration, plasma treatment is an indispensable step. It’s well known that dielectric properties might be degraded after the photoresist removal process that commonly implemented with O2 plasma ashing. In this study, we apply O2 plasma treatment to SiOC and SiOCF and find that O2 plasma treatment will damage the dielectric property and makes films moisture uptake. The leakage current conduction mechanism after moisture uptake is dominated by ionic conduction. In another, the NH3 plasma treatment will damage the SiOC and SiOCF films due to the ion bombardment. The H2 plasma treatment improves the dielectric property of SiOC. The H2 plasma treatment passivates the surface dangling bonds which relate to absorb moisture and that lost the dielectric property. Besides, for copper integration, metal might diffuse into the low-k films. We use Bias-Temperature-Stress (BTS) method to force copper diffuse into the films more rapidly and to evaluate the degradation of the films. After the BTS conditions 150oC,1MV/cm,1000 Sec, the leakage current density of SiOC and SiOCF still kept at a very low magnitude even at a high electric field. The result shows that both SiOC and SiOCF have good resistance to against copper diffusion.
中文摘要……………………………………………………………………………Ⅰ
英文摘要……………………………………………………………………………Ⅱ
誌謝......................................................................................................................................Ⅳ
目錄…………………………………………………………………………………..Ⅴ
表目錄………………………………………………………………………………..Ⅶ
圖目錄………………………………………………………………………………..Ⅷ
符號目錄…………………………………………………………………………..ⅩⅡ

第一章 序論
1.1 論文背景與動機……………………………………………….1
1.2 多層導體內連線的介電材料……………………………….....3
1.3 論文組織…………………………………………………………5

第二章 實驗步驟
2.1 材料及試片準備……………………………………………….6
2.2 SiOC及SiOCF的熱穩定性……………………………………...6
2.3 SiOC及SiOCF的電漿處理……………………………………...7
2.4 SiOC及SiOCF的材料分析………………………………………7
2.5 MIS電容結構的製作以及電性量測……………………………...8
2.6 加壓溫度逼迫量測(BTS)………………………………………...8

第三章 SiOC及SiOCF的本質特性
3.1 簡介......................................................................................................9
3.2 SiOC及SiOCF的本質組成.............................................................9
3.3 SiOC及SiOCF的熱穩定性...........................................................10
3.4 SiOC及SiOCF的電性................................................ .................11
3.4.1 SiOC及SiOCF的本質電性................................................11
3.4.2 SiOC及SiOCF的加壓溫度逼迫量測(BTS) ..................12
3.5 SiOC及SiOCF的硬度和楊氏係數..........................................14

第四章 電漿處理對SiOC及SiOCF的影響
4.1 簡介....................................................................................................15
4.2 氧電漿處理SiOC及SiOCF的影響……………………………15
4.3 SiOC及SiOCF的水氣吸附……….... .......................................16
4.4 氨電漿處理SiOC及SiOCF的影響............................................17
4.5 氫電漿處理SiOC及SiOCF的影響..............................................18
第五章 結論………………………………………………………………………..19
參考文獻..............................................................................................................................20
第一章附表…………………………………………………………...……………...23
第一章附圖……………………………………………………...…………………...25
第二章附表…………………………………………………………...……………...28
第三章附圖…………………………………………………………………………..29
第四章附圖…………………………………………………………………………..43
附錄: 英文論文……………………………………………………………………...56
References

[1] L. Peters, “Pursuing the perfect low-k dielectrics”, Semiconductor International, vol. 21, no. 10, Sep. p. 64 (1998).
[2] T. Homma, Mater. Sci. Eng., vol.23, p.243, (1998).
[3] P. T. Liu, T. C. Chang, Y. L. Yang, Y. F. Cheng, S. M. Sze, IEEE Trans. Electron Devices, vol.47, p.1733, (2000).
[4] T. Ida, M. Rossnegal and D. Mika Isen, J. Vac, Sci. Technology A-9.261(1991).
[5] T. Sakurai, IEEE Trans. Electron Devices, 40, 118, (1993).
[6] C. H. Ting and T. E. Seidel, Mater. Res. Soc. Symp. Proc. Vol.381, p.3, (1995).
[7] Y. H. Kim, H. H. kim, S. K. Lee, H. J. Kim, S. O. kim and Y. S. Son, J. Korean Phys. Soc., vol.47, p.1733, (1998).
[8] H. Landies, P. Burke, W. Cote, W. Hill and C. Hoffman, “Integration of chemical mechanical polishing into CMOS integrated circuit manufacturing”, Thin Solid Films, 220, p.1, (1991).
[9] D. Parmanik, “Integrating dielectrics into sub-half-micron multilevel metallization circuits”, Solid State Technology, Sept., p.69, (1995).
[10] D. Sylvester, Hu Chenming, O. S. Nakagawa, “Interconnect scaling: signal integrity and performance in future high-speed CMOS designs”, VLSI Technology Symposium, p.42-43, (1998).
[11] V. McGayay, A. Acovic, B. Argarwala, G. Endicott, M. Shapiro, and S. Yankee, Int. VLSI Multilevel Interconnection Conf. Proc., p. 116 (1996).
[12] M. J. Loboda, C. M. Grove and R. F. Schneider, J. Electrochem. Soc., 145, 2861 (1998).
[13] H. Meynen, R. Uttecht, T. Gao, M. Van Hove, S. Vanhaelemeersch and K. Maex, in the Electrochem. Soc. Proceedings of the 3rd international Symposium on Low and High Dielectric Constant Materials, 98-3, 29, (1998).
[14] Chang TC, Liu PT, Mei YJ, Mor YS, Perng TH, Yang YL, Sze SM, ”Effects of H-2 plasma treatment on low dielectric constant methylsilsesquioxane”, J. Vacuum. Science Technology B,17 (5): 2325-2330 SEP-OCT, (1999).
[15] Kim TH, Im YH, Hahn YB, “Plasma enhanced chemical vapor deposition of low dielectric constant SiCFO thin films”, CHEMICAL PHYSICS LETTERS
368 (1-2): 36-40 JAN 14 ,(2003).

[16] Sabharwal J, Lee P, Sugiarto D, Sato T, Oka N, Reiter S, ”Integrating PECVD low-k dielectric layers”, SOLID STATE TECHNOLOGY : S15-S16 Suppl. S SEP ,(2002).
[17] Kim JY, Hwang MS, Kim YH, Kim HJ, Lee Y, “Origin of low dielectric constant of carbon-incorporated silicon oxide film deposited by plasma enhanced chemical vapor deposition”, JOURNAL OF APPLIED PHYSICS, 90 (5): 2469-2473 SEP 1 ,(2001).
[18] Fayolle M, Torres J, Passemard G, Fusalba F, Fanget G, Louis D, Assous M, Louveau O, Rivoire M, Haxaire K, Mourier M, Maitrejean S, Besson P, Broussous L, Arnaud L, Feldis H, “Integration of Cu/SiOC in Cu dual damascene interconnectfor 0.1-mu m technology”, MICROELECTRONIC ENGINEERING 64 (1-4): 35-42 OCT ,(2002).
[19] Kawakami, N.; Fukumoto, Y.; Kinoshita, T.; Suzuki, K.; Inoue, K.-I., Interconnect Technology Conference, 2000. Proceedings of the IEEE 2000 International , 2000, Page(s): 143 –145.
[20] Riedel, S.; Schulz, S.E.; Baumann, J.; Rennau, M.; Gessner, T. , Microelectronic Engineering Volume: 55, Issue: 1-4, March, 2001, pp. 213-218.
[21] J. D. McBrayer, R. M. Swanson, and T. W. Sigmon, “ Diffusion of metals in Silicon Oxide,” J. Electrochem. Soc., vol.133, no. 6, p. 1241-1246, (1986).
[22] J. S. H. Cho, H.-K.Kang, C. Ryu, and S. S. Wong, “Reliability of CVD Cu barrier interconnections,” in IEDM Tech. Dig., p. 265-268, (1993).
[23] C. Chiang, S.-M. Tzeng, G. Raghavan, R. Villasol, G. Bai, M. Bohr, H. Fujimoto, and D. B. Fraser, “Dielectric barrier study for Cu metallization,” in Proc. VLSI Multilevel Interconnection Conf.,, p. 414-420, (1994).
[24] A. L. S. Loke, C. Ryu, C. P. Yue, J. S. H. Cho, and S. S. Wong, “Kinetics of copper drift in PECVD dielectrics,”IEEE electron device Lett. Vol. 17, p. 549-511, Dec. , (1996).
[25] E.T. Ryan and R. J. Fox III, Future Fab INT. 8, 169 ,(2000).
[26] P. T. Liu, T. C. Chang, S. M. Sze, F. M. Pan, Y. J. Mei, W. F. Wu, M. S. Tsai, B. T. Dai, C. Y. Chang, F. Y. Shih, H.D.Huang, Thin Solid Films, Vol.332, p.345 ,(1998).
[27] P. T. Liu, T. C. Chang, Y. S. Mor, S. M. Sze, Japanese Journal of Applied Physics, Vol.38. p. 3482 ,(1999).
[28] M. G. Albrecht and C. Blanchette, J. Electrochem. Soc., 145, 4019, (1998).
[29] H. Sololski, M. Kozlowski, ”DC conductivity of silica xerogels”, Journal of Non-Crystalline Solids, 19, (1996), 241-255.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top