(3.236.231.61) 您好!臺灣時間:2021/05/15 23:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃俊錡
研究生(外文):Jeng-Chi Hwang
論文名稱:薄型電子構裝晶片應力分析與晶片可靠性設計研究
論文名稱(外文):Stress Analysis and Reliable Design of Die for Thin Type IC Packages
指導教授:張嘉隆張嘉隆引用關係
指導教授(外文):Chia-Lung Chang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:81
中文關鍵詞:翹曲電子構裝LQFP晶片破裂應力晶片應力
外文關鍵詞:Die StressStressIC packageLQFPDie CrackingWarpage
相關次數:
  • 被引用被引用:9
  • 點閱點閱:358
  • 評分評分:
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:0
半導體產品朝輕薄短小的趨勢發展,電子構裝也朝相同趨勢。薄型電子構裝(LQFP208L)因厚度較薄且構裝面積與厚度比較大,結構勁度較弱,構裝在製造、測試、及操作時因其內部組件材料熱膨脹係數不同,在溫度變化所產生的晶片應力及構裝翹曲更是嚴重。本文利用有限元素軟體ANSYS模擬預測構裝翹曲,並與實驗結果比較。本研究旨在探討不同構裝有限元素分析模型1.連續合成模型與圖面模型,2.簡化與真實模型,3.考慮與不考慮化學收縮率,4.晶片側面增加與無軟性緩和材料,在封膠製程對構裝翹曲及晶片應力預測的差異,並討論不同材料(黏膠材料、膠體材料)和導線架厚度變更的選擇,對構裝在製造時所產生晶片應力及構裝翹曲的影響。晶片應力將以應力線性化方法區分為直接應力及彎曲應力,比較應力分佈趨勢差異,供晶片破壞預測參考。並以破壞力學理論討論晶片表面缺陷尺寸對構裝晶片破裂的影響。
The developing of electronic devices are toward lighter, thinner, shorter, and smaller, the IC packages follow the same trend. Low-Profile type packages as LQFP (Low-Profile Quat Flat Package), the thickness is thinner and the aspect ratio between area and thickness is larger. So the stiffness of thin type packages are weaker, the die stresses and package warpage generated during manufacturing processes, testing, and operations due to the coefficient of thermal expansion (CTE) mismatch among different components are severe. The package warpage is predicted by CAE softwave and compared with experimental measurements. This research discusses comparing the die stresses predicted by various finite element models 1. sequential build-up vs. frozen view, 2. simiplified vs. real solid, 3. with vs. without chemical shrinkage, 4. with vs. without side buffer of soft materials on die, during manufacturing processes. The research also discusses the effect of different materials(die attach and molding compound)and die pad thickness on die stresses and package warpage during manufacturing processes. The die stresses are divided into direct and bending stress by stress linearization, then the distribution of divided stresses for various designs are compared. Also the effect of die surface defect size on die cracking based on fracture mechanics is discussed.
目 錄

中文摘要 --------------------------------------------------------------------------- i
英文摘要 --------------------------------------------------------------------------- ii
誌謝 --------------------------------------------------------------------------- iii
目錄 --------------------------------------------------------------------------- iv
表目錄 --------------------------------------------------------------------------- vi
圖目錄 --------------------------------------------------------------------------- vii
符號說明 --------------------------------------------------------------------------- ix
第一章 緒論--------------------------------------------------------------------- 1
1.1 前言--------------------------------------------------------------------- 1
1.2 構裝層級--------------------------------------------------------------- 1
1.3 構裝型態--------------------------------------------------------------- 2
1.4 構裝製程--------------------------------------------------------------- 5
1.5 未來發展趨勢--------------------------------------------------------- 7
1.6 文獻回顧--------------------------------------------------------------- 8
1.7 研究目的--------------------------------------------------------------- 10
第二章 研究方法--------------------------------------------------------------- 11
2.1 有限元素模擬方法--------------------------------------------------- 11
2.2 翹曲與熱應力分析--------------------------------------------------- 11
2.2.1 等效熱膨脹係數------------------------------------------------------ 12
2.2.2 膠體化學縮收率------------------------------------------------------ 12
2.2.3 異質材料之邊際效應------------------------------------------------ 13
2.2.4 導線架簡化設計------------------------------------------------------ 13
2.3 分析步驟注意事項--------------------------------------------------- 13
2.4 應力線性化擷取位置------------------------------------------------ 17
2.5 翹曲量測實驗方法--------------------------------------------------- 18
第三章 理論基礎--------------------------------------------------------------- 19
3.1 翹曲分析基礎理論--------------------------------------------------- 19
3.1.1 雙層級多層板翹曲理論--------------------------------------------- 19
3.1.2 Suhir翹曲分析-------------------------------------------------------- 21
3.2 熱應力分析基礎理論------------------------------------------------ 26
3.2.1 雙層及多層板熱應力理論------------------------------------------ 26
3.3 有限元素方法理論--------------------------------------------------- 28
3.3.1 有限元素法翹曲分析------------------------------------------------ 28
3.3.2 有限元素法熱應力分析--------------------------------------------- 28
3.3.3 有限元素應力線性化分析------------------------------------------ 29
3.3.4 線彈性破壞力學------------------------------------------------------- 31
第四章 構裝翹曲與應力分析------------------------------------------------ 34
4.1 分析模型建立--------------------------------------------------------- 34
4.2 翹曲及應力之驗證與比較分析------------------------------------ 37
4.2.1 翹曲驗證分析--------------------------------------------------------- 37
4.2.2 應力驗證分析--------------------------------------------------------- 41
4.3 LQFP208L翹曲及應力分析探討---------------------------------- 43
4.3.1 LQFP208L幾何尺寸與材料性質---------------------------------- 43
4.3.2 翹曲模擬分析--------------------------------------------------------- 44
4.3.3 晶片應力分佈--------------------------------------------------------- 48
4.4 材料性質及簡化模型探討------------------------------------------ 52
4.4.1 黏膠材料變更探討--------------------------------------------------- 52
4.4.2 膠體材料變更探討--------------------------------------------------- 53
4.4.3 導線架簡化和完整模型探討--------------------------------------- 54
4.5 晶片應力線性化探討------------------------------------------------ 56
4.5.1 應力線性化驗証------------------------------------------------------ 55
4.5.2 應力線性化圖示擷取說明------------------------------------------ 67
4.6 應力緩衝層(Stress Buffer)影響------------------------------------ 69
4.7 線彈性破壞力學應用於構裝 破壞-------------------------------- 71
第五章 結論--------------------------------------------------------------------- 73
參考文獻 --------------------------------------------------------------------------- 75
參考文獻
1.江國寧,1998年6月,電子構裝與計算力學,高速計算世界第六卷第二期,第19-28頁.
2.謝宗雍,微電子材料與製程,交大材料所教學課程第10章電子構裝技術。
3.Lawrence Yip and Ahmad Hamzehdoost, 1995, “Package Warpage Evaluation for High Performance PQFP”, IEEE Electronic Components and Technology Conference, pp.229-233.
4.G. Kelly, C. Lyden, W, Lawton, and J. Barrett, 1994, “Accurate Prediction of PQFP Warpage”, Electronic Components and Technology Conference, pp.102-105.
5.G. Kelly, C. Lyden, W. Lawton, J. Barrett, A. Saboui, H. Page, and H. J.B.Peters, 1996, “Importance of Molding Compound Chemical Shrinkage in the Stress and Warpage Analysis of PQFP's ”, IEEE Transactions on Components, Packaging, and Manufacturing Technology – Part B, Vol.19, No.2, pp.296-300.
6.Rajiv C. Dunne and Suresh K. Sitaraman, 1998, ”Process Modeling for Sequential Build-up of Multi-Layered Structures”, Electronic Components and Technology Conference, pp.353-361.
7.Jianjun Wang and Sheng Liu, 1997, ”Sequential Processing Mechanics Modeling for a Model IC Package”, IEEE Transactions on Components Packaging, and Manufacturing Technology-Part C, Vol.20, NO.4, pp.335-342.
8.S. Timoshenko, 1925, “Analysis of Bi-Metal Thermostats”, J. Opt. Soc. Am., Vol.11, pp.233-255.
9.W. T. Chen and C. W. Nelson, 1979, “Thermal Stress in Bonded Joints”, IBM J. of Research and Development, Vol.23, No.2, pp.179-187.
10.E. Suhir, 1989, “Interfacial Stresses in Bimetal Thermostats”, J. of Applied Mechanics, Vol.56, pp.595-600.
11.J. W. Eischen, C. Chung, and J. H. Kim, 1990, “Realistic Modeling of Edge Effect Stresses in Bi-material Elements”, J. of Electronic Packaging, Vol.112, pp.16-23.
12.Z.Q.Jiang, Y.Huang, and A.Chandra,1997,”Thermal Stresses in Layered Electronic Assemblies”, Journal of Electronic Packaging, Vol.119, pp.127-132.
13.H.L.Liew , A.Q.Yasir , A.Y.Hassan ,and K.N.Seetharamu, 1998, ”Engineering Model for Thermal Mismatch Stresses at the Interface of a Non-Uniformly Heated Two Layer Structure”, International Journal of Microcircuits and Electronic Packaging, Vol.21, No.2, pp.186-190.
14.Wan-Lee Yin, 1995, ”Interfacial Thermal Stresses in Layered Structures: The Stepped Edge Problem”, Journal of Electronic Packaging, Vol.117, pp.153-158.
15.Steven Groothuis, Walter Schroen, and Masood Murtuza, 1985,”Computer Aided Stress Modeling for Optimizing Plastic Package Reliability”, IEEE/IRPS Conference, pp.184-191.
16.G. Kelly, C. Lyden, C. O’Mathuna, and J. S. Campbell, 1992, “Investigation of Thermo-Mechanically Induced Stresses In a PQFP 160 Using Finite Element Technology”, 42nd Electronic Component Technology conference, pp.467-472.
17.陳佑寧和蔡明義,1998,「PBGA封裝體熱應力及變形之理論與有限元素分析」,中國機械工程學會第15屆全國學術研討會論文集(固力與設計),第503-510頁.
18.N.Chidambaram and Marc Papageorge, 1994,”Stress and Coplanarity Analysis of 255BGA Package”, IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, pp.355-357.
19.Atila Mertol, 1995,”Application of the Taguchi Method on the Robust Design of Molded 225 Plastic Ball Grid Array Packages”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol.18, No.4, pp.734-743.
20. J.H.Lau and K.L.Chen,1997,”Thermal and Mechanical Evaluations of a Cost-Effective Plastic Ball Grid Array Package”, Journal of Electronic Packaging, Vol.119, pp.208-212.
21.Stylianos Michaelides and Suresh K. Sitaraman, 1999, “Die Cracking and Reliable Die Design for Flip-Chip Assemblies, “IEEE Transactions on Advanced Packaging, Vol.22, NO.4, pp.602-613.
22.D.W. Palmer, D.A. Benson, D.W. Peterson, and J.N. Sweet, 1998, ”IC Chip Stress During Plastic Package Molding”, Electronic Components and Technology Conference, pp.1328-1331.
23.C.G.M Van Kessel, Stephen A. Gee, and James J. Murphy, 1983, “The Quality of Die-Attachment and Its Ration ship to Stresses and Vertical Die-Cracking, “IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. CHMT-6, NO.4, pp.414-420.
24.David W. Peterson, James N. Sweet, Steven N. Burkett, and Alex Hsia, 1997, “Stress From Flip-Chip Assembly and Underfill; Measurements with the ATC 4.1 Assembly Test Chip and Analysis by Finite Element Method, “Electronic Components and Technology Conference, pp.134-143.
25.施應慶,陳友寧,陳守龍,吳恩柏,蔡振榮及邵清安,2001,「研磨製程對晶片強度的影響」,中國機械工程學會第18屆全國學術研討會論文集,(新興工程技術)第367-374頁。
26.M. Ranjan, L. Gopalakrishnan, K. Srihari, and C. Woychik, 1998, “Die Cracking in Flip Chip Assemblies,“ Electronic Components and Technology Conference, pp.729-733.
27.Milton Ohring, 1998, “Reliability and Failure of Electronic Materials and Devices,” Academic Press, San Dieago , U.S.A.pp.415-435.
28.Kuo-Yu Chou, Ming-jer Chen, Chiu-Ching Lin, Yen-Shieu Su, Chin-Shan Hou, and Tong-Chen Ong, 2001,”Die Cracking Evaluation and Improvement in ULSI Plastic Package,” Proc. IEEE Int. Conference on Microelectronic Test Structures, Vol.14, pp.239-244.
29.Jong-Bo Shim, Eun-Chul Ahn, Tae-Je Cho, Ho-Jung Moon, Tae-Gyeoug Chung, Ju-Hyun Lyu, Hung-Kyu Kwon, Sa-Yoon Kang and Se-Yong Oh, 2000, “Mechanisms of Die and Underfill Cracking in Flip Chip PBGA Package,” International Symposium on Advanced Packaging Materials, pp.201-205.
30.Lei L. Mercado, Vijay Sarihan, 2000, “Evaluation of Die Edge Cracking in Flip-Chip PBGA Package,“ Inter Society Conference on Thermal Phenomena, pp.73-78.
31.D.A. Broek,1986,“Elementary Engineering Fracture Mechanics,” Martinus Nijhaff, Dordrecht, The Netherlands, pp.75-98.
32.ASME, 1992,“ASME Boiler and Pressure Vessel Code Section VIII Division 2”, New York.
33.M.R. Eslami, and M. Shariyat, 1995, “A Technique to Distinguish the Primary and Secondary Stresses”, Journal of Pressure Vessel Technology, Vol. 117, pp.197-203.
34.Swanson Analysis Systems, Inc., 1993“ANSYS Theory Manual 5.0,” Houston, PA.
35.林維新,2000年6月,「加強散熱型PQFP多目標穩健設計之研究」,國立雲林科技大學機械工程所碩士論文。
36.J. H. Lau, December 1989, “A Note on the Calculation of Thermal Stresses in Electronic Packaging by Finite Element Methods”, Transactions of the ASME, Journal of Electronic Packaging, Vol.111, pp.313-320.
37.E. Suhir, 1993, “Predicted Bow of Plastic Packages of Integrated Circuit (IC) Devices”, Thermal Stress and Strain in Microelectronics Packaging, Edited by John H. Lau, Van Nostrand Reinhold, New York, pp385-409.
38.T.Y. Pan and Y.H. Pao, 1990, “Deformation in Multiplayer Stacked Assemblies”, J. of Electronic Packaging, Vol.112, pp.30-34.
39.Peter M. Hall, 1993, “Thermal Expansivity and Thermal Stress in Multilayered Structures”, Thermal Stress and Strain in Microelectronics Packaging, Edited by John H. Lau, Van Nostrand Reinhold, New York, pp78-94.
40.A. Mertol, 1992, “Stress Analysis and Thermal Characterization of a High Pin Count PQFP”, Journal of Electronic Packaging, Vol.114, pp.211-220.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top