(3.235.245.219) 您好!臺灣時間:2021/05/07 21:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳緯銘
研究生(外文):Wei-Ming Chen
論文名稱:高鋁方向性電氣鋼片再結晶行為之研究
論文名稱(外文):A Study of Recrystallization Behaviors of High Aluman Grain Oriented Electrical Steel
指導教授:侯春看侯春看引用關係
指導教授(外文):Chun-Kan Hou
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:158
中文關鍵詞:電磁鋼片爐氛氮化二次再結晶
外文關鍵詞:Acquired inhibitor methodTextureGrain oriented electrical sttel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
方向性電磁鋼片是重要的機能性材料,用來製作變壓器的鐵心,它的磁特性直接影響到電機機械的效率。由於傳統製程需要高溫加熱來固溶鑄碇所形成的粗大介在物粒子,然而太高的溫度將會不易操作、降低爐子壽命、消耗能源及鋼胚氧化�蚰砦L厚等問題。本研究的目的是採用爐氛氮化方式來取代傳統製程,藉以在二次再結晶退火前產生微細介在物粒子,做為製程上主要的抑制劑(氮化鋁)。並探討製程變數對方向性電磁鋼片微觀組織、介在物分佈與二次再結晶效應的影響,並說明再結晶行為與磁特性的關係。
探討的變數因子有兩部分,一是改變傳統方向性電磁鋼片的Mn、S、Al、N抑制劑元素含量,其二是在製程中,變化再加熱溫度、熱軋板退火溫度、最後退火方式及二次再結晶退火溫度等條件,以探討製程變數對高鋁方向性電氣鋼片的再結晶行為的影響和氮氣比和升溫速率對磁特性的變化做說明。
高鋁試片因固溶溫度在1350℃以上,而本次實驗再加熱溫度都未達到介在物固溶到基地所需的溫度,所以熱軋後重新析出微細介在物粒子量較少,在二次再結晶退火時,無法產生足夠抑制一次再結晶晶粒成長的析出物,因此晶粒組織會隨著溫度升高而正常成長。其次本實驗希冀於氮化高鋁方式來產生抑制晶粒成長之抑制劑(氮化鋁),因此在二次再結晶退火時通入氮氣,預期氮原子會經由擴散作用來產生氮化反應。但有實驗結果得知,氮化高鋁反應並不強烈,所以無法藉由後階段的熱處理(氮化高鋁)來完成二次再結晶成長機制。對於低鋁試片,由於熱軋時已完全固溶粗大介在物到基地,所以退火後可以經由重析出微細粒子來抑制晶粒成長(介在物粒子分佈不均),使部分晶粒取得成長優勢,當溫度加熱到1000℃,因介在物粗化或固溶失去抑制作用,造成晶粒不規則成長,逐漸發展成較大晶粒組織。
當升溫速率越緩慢時,就越能延長加熱的時間,對於再結晶組織的成長就會越有幫助。低鋁試片在一次再結晶脫碳退火後,以0.2℃/min加熱至1200℃並持溫10小時,可以得到較大的再結晶組織。相對地,其磁通密度值和鐵損值都有較佳的表現。氮氣比和升溫速率對高鋁試片並無明顯的影響,當升溫速率變慢或通入全氮氣體,都不能有效改善氮化效率,因此,其磁通密度值和鐵損值都較差。
Grain oriented electrical steel is an important function material used as lamination cores of transformers, and it’s magnetic property directly affects the efficiency of electric machinery equipment. Traditional process needs high temperature to dissolve larger inclusion, but there are metallurgical problems of controlling secondary recrystallization and the disadvantage of consuming energy in high temperature. Therefore, this investigation discuss the effect of using acquired inhibitor method for microstructure and precipitate of oriented electrical steel in secondary recrystallization.

High Aluminum specimen can’t obtain secondary recrystallization after final annealing, because reheating temperature needs up to 1350℃ that MnS and AlN are able to dissolve in the steel matrix. So this result can’t provide suitable precipitate before secondary recrystallization. In addition, nitriding reaction didn’t occur to form AlN. Therefore, it can’t prevent normal grain growth during final annealing. Low aluminum specimen cause local grain development due to inhomogeneous precipitate distribution.

When slow heating rate(0.2℃/min) and injecting pure nitrogen gas by final annealing favor grain growth of low aluminum specimen. It’s grain is more coarse. We can obtain better core loss and permeability. For the change of heating rate and nitrogen gas ratio on the high aluminum sample can’t get good magnetic property because it’s abnormal grain growth didn’t occur during final annealing.
中文摘要…………………………………………………………………………... i
英文摘要…………………………………………………………………………... ii

誌 謝 …………………………………………………………………………... iii
目 錄…………………………………………………………………………... iv

表目錄……………………………………………………………………………... viii
圖目錄……………………………………………………………………………... xix
符號說明…………………………………………………………………………... xx
第一章 緒論…………………………………………………………………….. 1
1.1前 言………………………………………………………………………….. 1
1.2電磁鋼片的電磁特性…………………………………………………………. 2
1.2.1鐵損值(Core loss) ………………………………………………………… 2
1.2.2導磁率(Permeability) …………………………………………………….. 4
1.3方向性電磁鋼片中二次再結晶機制的因素與理論…………………………. 5
1.3.1合金元素的添加量與種類……….………………………………………. 6
1.3.2鑄錠的產生方式…….…………………………………………………….. 7
1.3.3熱軋製程…….…………………………………………………………….. 8
1.3.3.1熱軋時Goss優選方位的形成………………………………………. 8
1.3.3.2熱軋時微觀組織的變化……………………………………………… 10
1.3.3.3熱軋時抑制劑析出的控制…………………………………………… 11
1.3.4冷軋與退火製程………………………………………………………….. 12
1.3.5二次再結晶退火製程…………………………………………………….. 13
1.4近年來方向性電磁鋼片之發展趨勢…….…………………………………… 16
1.5本論文將研究的課題…………………………………………………………. 17
第二章 實驗方法…….………………………………………………………….. 30
2.1製造流程………………………………………………………………………. 30
2.1.1材 料…………………………………………………………………….. 30
2.1.2熱 軋…………………………………………………………………….. 30
2.1.3熱軋板退火……………………………………………………………….. 31
2.1.4熱軋板表面�蚰皏h除…………………………………………………….. 31
2.1.5第一道冷軋……………………………………………………………….. 32
2.1.6中間退火………………………………………………………………….. 32
2.1.7第二道冷軋……………………………………………………………….. 32
2.1.8一次再結晶脫碳退火與二次再結晶退火……………………………….. 33
2.2分析方法與試片準備…………………………………………………………. 34
2.2.1碳成分分析與試片準備………………………………………………….. 34
2.2.2微觀組織觀察與試片準備……………………………………………….. 34
2.2.3晶粒尺寸的量測………………………………………………………….. 35
2.2.4介在物觀察與量測……………………………………………………….. 35
2.2.4.1介在物粒子大小與分佈的統計……………………………………… 35
2.2.4.2掃瞄式電子顯微鏡觀察判在物粒子的大小與分佈………………… 35
2.2.5優選方位試片準備與量測……………………………………………….. 36
2.2.6磁特性量測……………………………………………………………….. 36
第三章 結果與討論……………………………………………………………... 41
3.1成分與再加熱溫度對熱軋板的微觀組織及固溶介在物大小與分佈的影響…………………………………………………………………………………... 41
3.1.1成分與再加熱溫度對熱軋中未固溶介在物大小與分佈的影響……… 41
3.1.2成分與再加熱溫度對熱軋板中熱軋組織的影響………………………. 42
3.2成分與熱軋板退火溫度對熱軋板微觀組織及優選方位的影響…………. 43
3.2.1成分與熱軋板退火溫度對熱軋板介在物粒子析出分佈的影響……… 43
3.2.2成分與熱軋板退火溫度對熱軋板金相組織的影響…………………… 44
3.2.3成分與熱軋板退火溫度對熱軋板優選方位的影響…………………… 45
3.3成分與中間退火溫度對冷軋板金相組織的影響…………………………. 46
3.4二次再結晶退火溫度對再結晶效應的影響(模擬連續升溫方式熱處理)..……………. …….…………………………………………………………… 47
3.4.1二次再結晶退火溫度對介在物析出分佈的影響………………………. 47
3.4.2二次再結晶退火後的微觀組織………………………………………… 48
3.4.2.1再加熱溫度對二次再結晶的影響…………………………………… 48
3.4.3熱軋板退火溫度對於二次再結晶的影響………………………………. 50
3.4.4成分對二次再結晶的影響………………………………………………. 52
3.4.5二次再結晶退火溫度對優選方位的影響………………………………. 53
3.5二次再晶退火溫度對再結晶效應的影響(模擬批次退火方式熱處理)…... 55
3.5.1二次再結晶退火溫度對介在物析出分佈的影響……………………… 55
3.5.2二次再結晶退火溫度對微觀組織的影響…………………….………… 55
3.5.3二次再結晶火溫度對優選方位的影響..……………………………….. 57
3.6氮氣比和升溫速率對方向性電磁鋼片二次再結晶的影響….…………... 58
3.7氮氣比和升溫速率對方向性電磁鋼片二次再結晶的影響……………… 58
3.7.1氮氣比和升溫速率對方向性電磁鋼片磁通密度的影響……………... 58
3.7.2氮氣比和升溫速率對方向性電磁鋼片鐵損值的影響.………………. 59
第四章 結論……………………………………………………………………... 151
參考文獻…………………………………………………………………………... 153
作者簡歷…………………………………………………………………………... 158
1.張永輝、吳志昌,1999,” 中鋼對電磁鋼片開發之演進及市場需求之消長”,磁性技術協會會訊,22期,pp.17-24,十月。
2.N.P.Goss, 1934,U.S.Patent 1965559.
3.K.Honda, S.Kaya, 1926, Sci. Reports, Tohoku Univ., vol. 15, pp.721-753.
4.Unite States Steel, The Making, Shaping and Treating of Steel, 10th.ed., ed. by W.T. Lankford. N.L.Samays, R.F.Craven, H.E.McGannon, pub. by Assc. of Iron and Steel Engineers,chap.46, pp.1321-1332.
5.ASTM A665-84, Flat-Rolled, Grain-Oriented, Silican Iron, Electrical Steel, Fully Processed Types. 23G048, 27G053, 30G058 and 35G066.
6.ASTM A677-84, Nonoriented Electrical Steel, Fully Processed Types.
7.ASTM A683-84, Nonoriented Electrical Steel, Semiprocessed Types.
8.ASTM A725-84, Flat-Rolled, Grain-Oriented, Silicon Iron., Electrical Steel, Fully Processed Types. 23H048, 27H053, 30H058 and 35H066.
9.ASTM A726-85. Cold-Rolled Carbon Steel, Magnetic Lamination Quality, Types l,2 and 2S.
10.AISI, 1983, Electrical Steel.
11.JIS C2552, Non-Oriented Magnetic Steel Sheet and Strip.
12.JIS C2553, Grain-Oriented Magnetic Steel Sheet and Strip.
13.DIN 41301, Electro Sheets, Magnetic Materials for Tramformers.
14.DIN 46400, Steel Flat Product with Special Magnetic Properties, Cold-Rolled, Non-Oriented, Finally Annealed Magnetic Sheet and Strips, Technical Delivery Condition.
15.ASTM A340-87, Symbol and Definition Relating to Magnetic Testing.
16.G.Lyudkovsky, P.K. Rastogi and M.Bala, 1986, Jour. of Met., pp.18-26.
17.Y. Ushigami, H. Masui, Y. Okazaki, Y. Suga, N. Takahashi: J. Mater. Eng. Perfomance 5 (1996),pp. 310-315.
18.E.W.Golding, 1963, Electrical Measurement and Measuring Instruments, 5th.ed. (London, Pitman).
19.B.D.Cullity, 1972, Introduction to Magnetic Materials, Reading, Mass., Addison-Wesley Publishiag Co., pp.493-508.
20.F.Brailsford, 1966, Physical principles of Magnetsm, F. Vannostrand, pp.238-240.
21.R.H.Pry, C.P.Bean, 1958,"Calculation of the Energy Lossin Magnetic Sheet Materials Using a Domain Model", Journal of Applied Physics, vol.29, pp.532-533.
22.W.M.Swift, 1973, "Breakdown of Primary Grain Boundary Inhibition in 3Pct Si-Fe Sheet", Met. Trans., vol.4, pp.841-845.
23.T.Gladman, 1986, "Grain Growth and Secondary Recrystallization", Encyclopedia of Materials Science and Engineering, ed. M.M.Bever, pp.2405-2051.
24.G.Abbruzzese, I.Ciancaglioni, A.Campopiano, 1988, " On the Mechanism of Secondary Recrystallization in Grain Oriented Silicon Iron", Texture and Microstructure, vol.8&9, pp.401-412.
25.J.Harase, R.Shimizu, N.Takahashi, 1990, " Prediction of Secondary Recrystalliza-ion Texture by Three Dimensional Texture Analysis", Recrysiallization '90, ed. T.Chandra, The Minerals, Metals & Materials Society, pp.801-806.
26.Y. Hayakawa and J. A. Szpunae, 1997, Acta mater. Vol. 45,No. 11, pp. 4713-4720.
27.H.C.Fiedler, 1958, J. Appl. Phys., vol.29, pp.361.
28.T.Sashio, B.Fukada., 1990, "Development of Grain-Oriented Silicon Steel Sheets with Low Iron Loss", Kawasaki Steel Technical Report, no.22, pp.84-91.
29.B. Sundman, B. Jannson and J. O. Anderson, Calphad 9 (1985),pp.153.
30.J.W.Schoen. 1986,"High Temperature Grain Grorth during Slab Reheating of oriented 3 Pct Si-Fe Made Using Continuous Casting", Met. Tran., vol.l7a, pp. 1335-1346.
31.Y.Kawamo, T.Wada, S.Hayami, 1990, "Secondary Recrystallization of 3﹪Si-Fe Alloy in the Case of Using α Single Phase 3﹪Si-Fe Slab for the Material", Recrystallization '90, ed. T.Chandra, The Minerals, Metals & Materials Society, pp.801-806.
32.H.A.Wriedt. Hsun.Hu, 1976, "The Solubility Product of Manganese Sulfide in 3Pct Silicon-Iron at 1270 to 1670K", Met. Trans., vol.7a, pp.711-718.
33.H.A.Wriedt, 1980,"Solibility product of Aluminum Nitride in 3Percent Silicon Iron", Met. Trans., vol. 11a, pp.1731-1738.
34.T.H.Shen, 1986, "The Study of Desulfurization Kinetics in Grain Oriented 3 Person Silicon Iron", Met. Trans., vol.17a, pp.1347-1351.
35.T.Gladman, D.Dulieu, 1974, Metal Science, vol.8, pp.167.
36.T.Gladman, 1992, "Grain Refinement in Multiple Micro-alloyed Steel", HSLA Steel: Processing, Properties and Applications, ed. by G.Tither and Z.Shouhua, The Minerals, Metals & Materials Society, pp.3-14.
37.M.F.Littmann, 1975, Met. Trans., vol.6a, pp.1041.
38.K.Kumal, M.Motoyoshi, K.Tanaka, Y.Hakiwara, 1972, U. S. Patent 3671337.
39.1973, U. S. Patent 3764406.
40.A.Sakakura, F.Matsumoto, K.Ueno, 1974, U. S. Patent 3841924.
41.Y.Inokuti, C.Maeda, Y.Ito, H.Shimanaka, 1983, "Transmission Kossel Study of Origin of Goss Texture in Grain Oriented Silicon Steel", Tran. ISIJ, vol.23, pp.440-449.
42.H.Hu, 1974, "Texture of Metals", Texture, vol.1, pp.233-258.
43.Y.Inokuti, C.Maeda, Y.Ito, H.Shimanaka, 1983, "Transmission Kossel Study of Origin of Goss Texture in Grain Oriented Silicon Steel", Tran. ISIJ, vol.23, pp.440-449.
44.M.Matsuo, T.Sakai, Y.Suga, 1986, "Origin and Development of Through the Thickness Variations of Texture in the Processing of Grain Oriented Silicon Steel", Met. Trans., vol.l7a, pp.1313-1322.
45.Y.Shimizu, Y.Ito, Y.Iida, 1986, "Formation of the Goss Orientation near the Surface of 3 Pct Silicon Steel during Hot Rolling", Met. Trans., vol.17a, pp.1323-1334.
46.M.Matsuo, T.Sakai, Y.Suga, 1986, "Origin and Development of Trough the Thickness Variations of Texture in the Processing of Grain Oriented Silicon Steel", Met. Trans., vol.l7a, pp.1313-1322.
47.M.Matsuo, S.Hayami, S.Nagashima, 1971, Trans. Iron Steel Inst. Jpn., suppl. to vol.11, pp.867-871.
48.I.Gokyu, M.Matsuo, 1967. J. Jpn. Inst. Met., vol.31, pp.374-380.
49.


50.

51.M.Manabe, T.Obara, T. Kan, 1993, "Recrystallization Behavior of 3﹪ Si Steel after High Temperature Deformation", Materials Science Forum, vol.113-115, pp.491-496.
52.M.Muraki, T.Obara, M.Satoh, T.Kan, 1995,"Control of Recrystallization during High-Temperature Hot-Rolling of Grain Oriented Silicon Steel", JMEPEG, vol.4, pp.413-417.
53.W.P.Sun, W.J.Liu, J.J.Jonas,1989,"A Creep Technique for Monitoring MnS Pre-cipatation in Si Steels", Met. Trans., vol.20a, pp.2707-2715.
54.W.P.Sun, M.Militzer, J.J.Jonas, 1992, "Strain-Induced Nucleation of MnS in Electrical Steel", Met. Trans., vol.23a, pp.821-830.
55.T.Obara, H.Takeuchi, T.Takamiya, T.kan, 1993, "Control of Inhibitor Precipit-ation for Producing Grain-Oriented Silicon Steel", JMEPEG, vol.2, pp.205-210.
56.L.Seidel, M.Holscher, K.Lucke, 1989, "Rolling and Recrystallization Texture in Iron 3﹪Silicon", Texture and Microstructures, vol.11, pp.171-185.
57.B.F.Decker, D.Harker, 1950, "Relations between Initia 1 and Final Orientations in Rolling and Annealing of Silicon Ferrite", Journal of Applied Physics, vol.22, pp.900-905.
58.C.G.Dunn, 1953, "Secondary Recrystallization Textures and their Origin in Cold-Rolled Single Crystals of Silicon Iron", Acta Metall., vol.1, pp.163-175.
59.W.R.Hibbard, Jr.W.R.Tully, 1961, "The Effect of Orientation on the Recrystallizat-ion Kinetics of Cold-Rolled Single Crystals", Trans. of the Metall. Society of AIME, vol.221, pp.336-343.
60.H.Hu, 1974, "Texture of Metals", Texture, vol.1, pp.233-258.
61.E.Furubayashi, T.Kikuchi, 1977, "Surface Texture in cold Rolled or Recrystallized Silicon Iron Single Crystals", Tetsu-to-Hagane, no.3, pp.72-80.
62.長嵨晉一,1984,集合組織,丸善株式會社,pp.65-125。
63.G.Abbruzzese, 1985, "Computer Simulated Grain Growth Staganation", Acta Metall., vol.33, no.7, pp.1329-1337.
64.G.Abbruzzese, S.Fortunati, 1989, "Development of Goss Texture during Grain Growth in Fe-3﹪Si", Physica Scripta, vol.39, pp.624-625.
65.G.Abbruzzese, A.Campopiano, 1990. "On the Role of Grain Boundary Energy in Secondary Recrystallization of Grain Oriented Silicon Iron", Recrystallization '90, ed. by T.Chandra, The Minerals, Metals & Materials Society, pp.667-672.
66.G.Abbruzzese, I.Ciancaglioni, A.Campopiano, 1988, " On the Mechanism of Secondary Recrystallization in Grain Oriented Silicon Iron", Texture and Microstructure, vol.8&9, pp.401-412.
67.J.Harase, R.Shimizu, N.Takahashi, 1990, " Prediction of Secondary Recrystalliza-ion Texture by Three Dimensional Texture Analysis", Recrysiallization '90, ed. T.Chandra, The Minerals, Metals & Materials Society, pp.801-806.
68.T.Gladman, 1992, "Grain Refinement in Multiple Micro-alloyed Steel", HSLA Steel: Processing, Properties and Applications, ed. by G.Tither and Z.Shouhua, The Minerals, Metals & Materials Society, pp.3-14.
69.T.Gladman, 1986, "Grain Growth and Secondary Recrystallization", Encyclopedia of Materials Science and Engineering, ed. M.M.Bever, pp.2405-2051.
70.G. W. Greenwood, Acta Met.,1973, vol. 4,pp. 495.
71.W. M. swift, Metall. Trans., 1973, vol. 4,pp. 153.
72.N.Takahash, j.Harase, 1996,”Recent Development of Technology of Grain Oriented silicon steel” , Material Science Forum, vols,204-206, pp.143-154
73.N. Takahashi and J.Harase, Proc. 2nd Int. Conf. On Grain Growth in Polycrystalline Material, Trans. Tech. Publications, to be published.
74.Nobuyuki Takahashi, Yozo Suga, Hisashi Kobayashi: J. Mag. Mag. Mater. 160 (1996), pp.98.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔