跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/19 04:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡威呈
研究生(外文):Wei-Chen Tsai
論文名稱:以本土菌運用生物通氣法於現地復育油污染土壤之研究
論文名稱(外文):In Situ Bioventing Remediation Study on the oil-contaminated soil by native selecting microorganism
指導教授:方鴻源方鴻源引用關係
指導教授(外文):Hung-Yuang Fang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:122
中文關鍵詞:柴油機油本土菌株原油生物復育生物通氣法
外文關鍵詞:diesel oilmotor oilbioventingcrude oilbioremediationnative selecting microorganism
相關次數:
  • 被引用被引用:5
  • 點閱點閱:410
  • 評分評分:
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:1
以本土菌運用生物通氣法於現地復育油污染土壤之研究
學生:蔡威呈 指導教授:方鴻源
國立雲林科技大學 環境與安全工程系碩士班
摘 要
本研究以台灣本土環境篩選出的柴油分解菌、煤油分解菌、機油分解菌、酚分解菌、石蠟分解菌、苯分解菌、甲苯分解菌、二甲苯分解菌之混合菌株,並配合生物通氣方式進行受石油系列物質污染土壤之生物復育試驗,評估應用於實場復育的可行性。
實驗用之兩種土壤分別採自斗六及二崙之土壤。使用ASTM D2487-85之土壤粒徑分析分類方法判定於斗六所採集的土壤為砂質壤土;於二崙所採集的土壤為壤質壤土。
添加本土菌株於受柴油污染之砂質壤土及壤質壤土中以三種不同試驗條件(空白組、通氣組及添加雙氧水組)進行五週的生物復育試驗。砂質壤土:通氣組於第五週之油脂降解率可達86.4%為最佳,土壤中生菌數可達1.60×1011 CFU/g soil;其次為雙氧水添加組於第五週之油脂降解率為65.3%,且生菌數達3.00×1010 CFU/g soil;而空白組,油脂降解率及土壤中生菌數均沒太大變化。壤質壤土:通氣組於第五週之油脂降解率可達59.8%為最佳,土壤中生菌數為3.30×108 CFU/g soil;其次為雙氧水添加組於第五週之降解率為46.2%,土壤中生菌數為3.67×107 CFU/g soil。由GC分析中可知,兩種不同質地之土壤隨復育時間增加柴油G.C分析圖譜中碳數在22以下之各波峰均有下降的趨勢,尤其以通氣組之波峰下降趨勢最明顯,證明添加本土化之石油系列分解菌株配合通氣法可有效的將柴油降解代謝。
添加本土菌株於受原油污染之砂質壤土及壤質壤土中如同柴油之生物復育試驗。砂質壤土:通氣組於第五週之油脂降解率可達70.3%為最佳,土壤中生菌數可達8.20×1010 CFU/g soil;其次為雙氧水添加組於第五週之降解率為58.8%,土壤中生菌數為3.50×109CFU/g soil。空白組則五週之油脂降解率及土壤中生菌數一樣沒有太大的變化。壤質壤土:通氣組於第五週之油脂降解率可達64.9%為最佳,土壤中生菌數4.80×109CFU/g soil;其次為雙氧水添加組於第五週之降解率為54.3%,土壤中生菌數9.00×108CFU/g soil。由GC分析圖譜中可知,以通氣組於分析圖譜之波峰下降趨勢最明顯。
添加本土菌株於受機油污染之砂質壤土及壤質壤土進行五週的生物復育試驗。砂質壤土:通氣組於第五週之油脂降解率53.8%為最佳,土壤中生菌數可達1.10×109CFU/g soil,其次為雙氧水添加組於第五週之降解率為39.1%,土壤中生菌數為8.40×107CFU/g soil。壤質壤土:通氣組之降解效率於第五週時為40.7%,土壤中生菌數為1.10×109 CFU/g soil,而添加雙氧水組於第五週時之降解效率為29.9%,土壤生菌數為8.40×107CFU/g soil。表示利用通氣的條件能有效的供給微生物氧氣作為電子接受者,使微生物增殖及降解機油。
受石油系列物質污染之砂質壤土及壤質壤土之生物復育成效比較發現砂質壤土之復育效果較壤質壤土效果佳,原因為砂質壤土之質地孔隙率較高,對於氧氣的傳輸也較容易,土壤中之菌株也因有足夠的氧氣供給而增殖並將污染物降解。
將不同條件下之復育結果進行反應級數及反應速率常數經驗值之演算。結果除了受原油污染壤質壤土之通氣組及雙氧水添加組為一階反應外,其他各復育組別均為二階的反應。
關鍵詞:本土菌株、生物復育、生物通氣法、柴油、機油、原油
In-Situ Bioventing Remediation study on the
oil-contaminated soil by native selecting microorganisms
Student: Wei-Chen Tsai advisor :Prof. Hung-Yuan Fang

Institute of Environment & Safety Engineering
National Yunlin University of Science & Technology

ABSTRACT
This study aim to apply the various petroleum hydrocarbons degradating bacteria, selecting from Taiwan environment, such as diesel oil, kerosene, motor oil, phenol, paraffin, toluene, xylene and benzene utilizer, to the oil contaminated soil and evaluate the reliability of air venting remedy method.
Two kinds of soil were sampled from Dou-liou and Erluen. The ASTM D2487-85 method was used to determine the properties of the soils. The soil from Dou-Liou belong to sandy loam, and the other was loam.
Two different bioremediation methods, Air venting, H2O2 addition and controller were used to evaluate the bioremediation efficiency of diesel oil contaminated in these two kinds of soils. By the end of five weeks bioremediation, the soil samples were analyzed with the viable counts, oil degrading efficiency and degradation of H.C fractions. The results of the remedy methods for sand loam were,(a) air venting group: the degradation efficiency of total petroleum hydrocarbon (TPH) and the viable counts were 86.4% and 1.60×1011 CFU/g soil; (b) H2O2 addition group: the degradation efficiency of the TPH, and the viable counts were 65.3% and 3.00×108 CFU/g soil. And the results of the remedy methods for loam were, (a) air venting group: the degradation efficiency of the TPH, and the viable counts were 59.8% and 3.30×108 CFU/g soil ;(b) the H2O2 addition group: the degradation efficiency of the TPH, and the viable counts were 46.2% and 3.67×107 CFU/g soil. The G.C analysis results revealed that all the hydrocarbon peaks of diesel oil were disappeared after five weeks bioremediation. From these result, it showed a strong evidence to prove that air venting method can supply enough oxygen to provide the selecting microorganism growth and degrade diesel oil effectivelly.
The same methods were used to evaluate the bioremediation effectiveness of crude oil contamination in these two kinds of soils. In the five weeks bioremediation . The results of the remediation for sand loam were, (a) air venting group: the degradation efficiency of the TPH, and the viable counts were 70.3% and 8.20×1010 CFU/g soil;(b) H2O2 addition group: the degradation efficiency of TPH, and the viable counts were 58.8% and 3.50×109 CFU/g soil. And the results of loam were(a) air venting group: the degradation efficiency of the TPH, and the viable counts were 64.9% and 4.80×109 CFU/g soil ;(b) H2O2 addition group: the degradation efficiency of the TPH, and the viable counts were 54.3% and 9.00×108CFU/g soil. The G.C analysis patterns revealed that all the hydrocarbon peaks of crude oil were disappeared evidently at air venting group after five weeks bioremediation.
The same methods were used to evaluate the bioremediation effectiveness of motor oil contamination in two kinds soils. In the five weeks bioremediation. The results of the remediation of sandy loam were (a) air venting group: the degradation efficiency of the TPH fraction and the viable counts were 53.8% and 1.10×109 CFU/g soil; (b) H2O2 addition group: the degradation efficiency of the TPH, and the viable counts were 39.1% and 8.40×107 CFU/g soil. And the result of loam were (a) air venting group: the degradation efficiency of the TPH, and the viable counts were 40.7% and 1.10×109 CFU/g soil ; (b) H2O2 addition group: the degradation efficiency of the TPH, and the viable counts were 29.9% and 8.40×107CFU/g soil. The air venting method can supply enough oxygen to provide the selecting microorganism growth and degraded motor oil effectivelly.
To compare the effect of two different soils properties in bioremediation. The sand loam has higher remedy efficiency, because the sand loam has higher porosity that can propitious oxygen transfer and provide enough oxygen for microorganism with growth and degrade the contaminants.
Apply the remediation data to calculate the reaction order and reaction constant. Besides loam cases of crude oil contaminated at air venting and add H2O2 conditions were first order reaction, all the experiment conditions were second order reaction.
Keywords: Native selecting microorganism, bioremediation, bioventing, diesel oil, motor oil, crude oil
目 錄
中文摘要………………………………………………………………………..I
英文摘要…………………………………………………………………..… III
致謝…………………………………………………………………………...VI
目錄………………………………………………………………………..... VII圖目錄………………………………………………………………………...X表目錄………………………………………………………………………XIII

一、緒論………………………………………………………………………...1 1.1研究缘起……………………………………………………………………1 1.2研究目的……………………………………………………………………2 二、文獻回顧…………………………………………………………………...3 2.1石油系列物質之組成………………………………………………………3 2.2石油系列物質的污染來源…………………………………………………5 2.3石油系列物質對環境的影響及其宿命……………………………………5 2.4土壤污染場址整治技術…………………………………………………..7 2.5物理/化學整治處理技術………………………………………………….10 2.6生物復育法………………………………………………………………..16 2.7生物復育技術……………………………………………………………..19 2.8現地生物復育技術………………………………………………………..21 三、材料與實驗方法………………………………………………………….25 3.1研究流程…………………………………………………………………..25 3.2實驗藥品與設備…………………………………………………………..27
3.2.1實驗藥品…………………………………………………………….27 3.2.2儀器設備…………………………………………………………….28
3.3土壤樣品物性及化性分析………………………………………………..28 3.3.1土壤物性分析……………………………………………………….28 3.3.2土壤化性分析……………………………………………………….29
3.4石油系物質分解菌………………………………………………………..30
3.5各菌種生物製劑活化培養………………………………………………..32
3.6菌體含量測定……………………………………………………………..32 3.6.1試劑溶液…………………………………………………………….32 3.6.2蛋白質檢量線測定………………………………………………….33 3.6.3培養液中菌體測定………………………………………………….33
3.7受油污染土壤之實場模擬試驗…………………………………………..35 3.7.1生物復育效率分析………………………………………………….35
四、結果與討論………………………………………………………………38
4.1試驗用土壤之基本特性…………………………………………………..38
4.1.1土壤之物理性質…………………………………………………….38
4.1.2土壤之化學性質…………………………………………………….39
4.2柴油污染土壤復育......................................................................................40
4.2.1柴油污染之砂質壤土於不同條件下之油脂降解………………….40
4.2.2柴油污染之砂質壤土中菌數之生長變化………………………….41
4.2.3柴油污染之砂質壤土復育過程中各種碳氫化合物降解變化情形.42
4.2.4柴油污染之壤質壤土於不同條件下之油脂降解………………….49
4.2.5柴油污染之壤質壤土中菌數之生長情形………………………….49
4.2.6柴油污染之壤質壤土復育過程中各種碳氫化合物降解變化情形.50
4.2.7受柴油污染之砂質壤土與壤質壤土復育成效之比較…………….57
4.3原油污染土壤復育之情形………………………………………………..57
4.3.1原油污染之砂質壤土於不同條件下之油脂降解情形…………….57
4.3.2原油污染之砂質壤土中菌株之生長情形………………………….58
4.3.3原油污染之砂質壤土復育過程中各種碳氫化合物降解變化…….59
4.3.4受原油污染之壤質壤土於不同條件下之油脂降解情形………….66
4.3.5原油污染之壤質壤土中菌株之生長變化………………………….66
4.3.6原油污染之壤質土壤復育過程中各種碳氫化合物降解變化情形.67
4.3.7受原油污染之砂質壤土與壤質壤土復育成效之比較…………….74
4.4機油污染土壤復育之情形………………………………………………..74
4.4.1機油污染之砂質壤土下之油脂降解情形………………………….74
4.4.2機油污染之砂質壤土中菌數之生長變化情形…………………….75
4.4.3機油污染之壤質壤土於不同條件下之油脂降解情形…………….76
4.4.4機油污染之壤質土壤中菌數之生長變化情形…………………….77
4.4.5機油污染之砂質壤土與壤質壤土復育成效之比較……………….77
4.5各復育條件下污染物濃度衰減速率及反應機制………………………..78
4.5.1柴油污染砂質壤土………………………………………………….78
4.5.2柴油污染壤質壤土………………………………………………….79
4.5.3原油污染砂質壤土………………………………………………….81
4.5.4原油污染壤質壤土………………………………………………….82
4.5.5機油污染砂質壤土………………………………………………….83
4.5.6機油污染壤質壤土………………………………………………….84
五、結論……………………………………………………………………….85
六、建議………………………………………………………………………88
七、參考文獻………………………………………………………………….89







圖目錄
圖2.1石油碳氫化合物組成………………………………………………….4
圖2.2石油系列物質發生洩漏示意圖………………………………………..7
圖2.3抽出處理法示意圖.................................................................................11
圖2.4土壤抽氣法示意圖.................................................................................12
圖2.5泥漿牆示意圖………………………………………………………….13
圖2.6空氣注入法示意圖…………………………………………………….14
圖2.7土壤淋洗法示意圖.................................................................................15
圖2.8生物通氣法示意圖…………………………………………………….22
圖2.9生物氣體注入法示意圖.........................................................................23
圖2.10生物抽除法示意圖…………………………………………………...24
圖3.1研究流程……………………………………………………………….26
圖3.2總磷之標準檢量線…………………………………………………….30
圖3.3菌體量之測定流程…………………………………………………….34
圖3.4蛋白質濃度檢量線…………………………………………………….34
圖3.5正烷類之定性分析圖………………………………………………….37
圖4.1斗六土壤顆粒粒徑分布圖…………………………………………….39
圖4.2二崙土壤顆粒粒徑分布圖…………………………………………….39
圖4.3柴油污染之砂質壤土油脂降解情形………………………………….41
圖4.4柴油污染之砂質壤土於復育開始前之正烷類……………………….43
圖4.5柴油污染之砂質壤土於復育一週後之正烷類……………………….44
圖4.6柴油污染之砂質壤土於復育二週後之正烷類……………………….45
圖4.7柴油污染之砂質壤土於復育三週後之正烷類……………………….46
圖4.8柴油污染之砂質壤土於復育四週後之正烷類……………………….47
圖4.9柴油污染之砂質壤土於復育五週後之正烷類……………………….48
圖4.10柴油污染之壤質壤土油脂降解情形………………………………...49
圖4.11柴油污染之壤質壤土於復育開始前之正烷類……………………...51
圖4.12柴油污染之壤質壤土於復育一週後之正烷類……………………...52
圖4.13柴油污染之壤質壤土於復育二週後之正烷類……………………...53
圖4.14柴油污染之壤質壤土於復育三週後之正烷類……………………...54
圖4.15柴油污染之壤質壤土於復育四週後之正烷類……………………...55
圖4.16柴油污染之壤質壤土於復育五週後之正烷類……………………...56
圖4.17柴油於不同土壤性質下生物通氣之降解效率……………………...57
圖4.18原油污染之砂質壤土油脂降解情形………………………………...58
圖4.19原油污染之砂質壤土於復育開始前之正烷類……………………...60
圖4.20原油污染之砂質壤土於復育一週後之正烷類……………………...61
圖4.21原油污染之砂質壤土於復育二週後之正烷類……………………...62
圖4.22原油污染之砂質壤土於復育三週後之正烷類……………………...63
圖4.23原油污染之砂質壤土於復育四週後之正烷類……………………...64
圖4.24原油污染之砂質壤土於復育五週後之正烷類……………………...65
圖4.25原油污染之壤質壤土油脂降解情形………………………………...66
圖4.26原油污染之壤質壤土於復育開始前之正烷類……………………...68
圖4.27原油污染之壤質壤土於復育一週後之正烷類變化………………...69
圖4.28原油污染之壤質壤土於復育二週後之正烷類變化………………...70
圖4.29原油污染之壤質壤土於復育三週後之正烷類變化………………...71
圖4.30原油污染之壤質壤土於復育四週後之正烷類變化………………...72
圖4.31原油污染之壤質壤土於復育五週後之正烷類變化………………...73
圖4.32原油於不同土壤性質下生物通氣之降解效率……………………...74
圖4.33機油污染之砂質壤土油脂降解情形………………………………...75
圖4.34機油污染之壤質壤土油脂降解情形………………………………...76
圖4.35機油於不同土壤性質下生物通氣之降解效率……………………...78
圖4.36柴油污染之砂質壤土反應級數回歸圖……………………………...79
圖4.37柴油污染之壤質壤土反應級數回歸圖……………………………...80
圖4.38原油污染之砂質壤土反應級數回歸圖……………………………...81
圖4.39原油污染之壤質壤土反應級數回歸圖……………………………...82
圖4.40機油污染之砂質壤土反應級數回歸圖……………………………...83
圖4.41機油污染之壤質壤土反應級數回歸圖……………………………...84













表目錄
表2.1受污染場址(土壤及地下水)整治技術...................................................9
表3.1各菌株生長培養基組成……………………………………………….31
表4.1試驗土壤之基本物理性質…………………………………………….38
表4.2試驗土壤之化學性質………………………………………………….40
表4.3柴油污染之砂質壤土於不同條件下五週菌數的變化……………….42
表4.4柴油污染之砂質壤土五週菌數的變化情形………………………….50
表4.5原油污染之砂質壤土五週菌數的變化情形………………………….59
表4.6原油污染之壤質壤土五週菌數的變化情形………………………….67
表4.7機油污染之砂質壤土於不同條件下五週菌數的變化……………….76
表4.8機油污染之壤質壤土五週菌數的變化情形………………………….77
表4.9柴油污染之砂質壤土反應速率常數經驗值………………………….79
表4.10柴油污染之壤質土壤反應速率常數經驗值………………………...80
表4.11原油污染之砂質壤土反應速率常數經驗值………………………...81
表4.12原油污染之壤質壤土反應速率常數經驗值………………………...82
表4.13機油污染之砂質壤土反應速率常數經驗值………………………...83
表4.14機油污染之壤質壤土反應速率常數經驗值………………………...84
七、參考文獻

1.環境分析技術講習會,2002,財團法人中華民國環境分析學會。
2.車道明,2002,油品污染土壤及地下水之復育技術,土壤及地下水污染調查與復育技術研討會論文集。
3.林秋裕,1991,衛工微生物學,大學圖書供應社,台中。
4.柯清水,1992,石油化學概論,正文書局,台北。
5.郭璧奎,1991,防止海水污染,幼獅文化事業公司,台北。
6.楊秋忠,2000,柴油分解菌對柴油乳化及分解作用之研究,中興大學土壤環境科學系所博士論文。
7.陶正綱,1994,油品污染土壤及地下水之調查與整治案例介紹,地工技術,第45期,pp.93~ 107。
8.李仕明,1999,石化污染土壤之生物復育影響因子研究,逢甲大學土木及水利工程研究所碩士論文。
9.葉琮裕,2002,環保訓練園地,環境保護人園訓練所。
10.車道明、晉葉,1997。土壤氣提技術手冊,工研院能資所, pp.117
11.方鴻源,2000,以混合菌株對石油系列物質的分解研究,行政院國家科學委員專題研究計畫成果報告。
12.張育傑,1992,柴油在土壤中之生物自淨能力研究,台灣大學環境工程研究所碩士論文。
13.洪聖濠,1998,土壤中燃料油污染之生物復育研究,台灣大學環境工程研究所碩士論文。
14.趙映琇,2002,石油分解微生物利用於土壤油污染之生物復育,雲林科技大學環境與安全工程所碩士論文。
15.Atlas, R. M., and R. Bartha., 1972, 〝Biodegradation of petroleum in seawater at low temperatures.〞, Can. J. Microbial., Vol.18, pp.1851-1855.
16.Atlas, R. M., and R. Bartha., 1973, 〝Stimulated biodegradation of oil slicks using oleophilic fertilizers.〞, Environ. Sci. Technol., Vol.7, pp.538-541.
17.Atlas, R. M., 1995,〝Bioremediation of Petroleum Pollutants.〞, International Biodeterioration & Biodegradation, Vol.35, pp.317-327.
18.Almar Otten et.al.,1997,”In Situ Soil Remediation”KLUWER ACADEMIC PUBLISHER, pp.34-38.
19.Bossert, I. and R. Bartha., 1984, The fate of petroleum in soil ecosystems, pp. 434-476. In R. M. Atlas (ed.), Petroleum microbiology. Macmillan Publishing Co., New York.
20.Brown, R. A., Norris. R. D., 〝The evolution of a technology: hydrogen peroxide in in-situ bioremediation〞, edited by Hinche, R. E., Alleman, B. C., Hoeppel, R. E., Miller, R. N., LEWIS POBLISHERS, pp.148-162, (1994).
21.Bruce E. Rittmann et al., 1994,”In Situ Bioremediation”Noyes Publications Co, New Jersey.
22.Colwell, R. R. and J. D. Walker., 1977, 〝Ecological aspects of microbial degradation of petroleum in the marine environment.〞, Crit. Rev. Microbiol. Vol.5, pp.423-445.
23.Cooney, J. J., 1984, 〝The fate of petroleum pollutant in freshwater ecosystems.〞, pp.399-434. In R. M. Atlas (ed.), Petroleum microbiology. Macmillan Publishing Co., New York.
24.Davis, S. J., and C. F. Gibbs. 1975, 〝The effect of weathering on crude oil residue exposed at sea〞, Water Res., Vol. 9, pp. 275-285.
25.Dibble. J. T., and R. Bartha., 1979, 〝Effect of environment parameters on the biodegradation of oil sludge〞, Appl. Environ. Microbial., Vol.37, pp.729-739.
26.EPA, 1999,Remediation Technologies Screening Matrix and Reference Guide,Ver.3.0, 600pp., Clu-In web site.
27.Evan K. Nyer et.al., 1996, “In Situ Treatment Technology”,LEWIS PUBLISHER, pp.61-97.
28.Fusey, P., and J. Oudot., 1984, 〝Relative influence of physical removal and biodegradation in the depuration of petroleum-contaminated seashore sediments.〞 Mar. Pollut. Bull., Vol. 15, pp. 136-141.
29.Facundo J.Marquez-Rocha, Vannessa Hernandez-Rodriguez, and Ma. Teresa Lamela, 2001, “Biodegradation of diesel oil in soil by a microbial consortium” Water. Air. And Soil Pollution, vol.128, pp. 313-320.
30.Hinchee, R., ed., 1994, Air Sparging for Site Remediation. Boca Raton, FL: Lewis Publishers.
31.J.Andy Soesilo et.al, 1997,”Site Remediation Planning and Management” LEWIS PUBLISHER,pp.202-211.
32.Lehtomaki, M. and S. Niemela., 1975, 〝Improving microbial degradation of oil in soil.〞 Ambio., Vol.4, pp.126-129.
33.Litchfield, C. D., 1991, Practices, potential, and pitfalls in the application of biotechnology to environmental problems. In Environmental Biotechnology for Waste Treatment, ed. G. Sayler et al., pp. 147-157, New York: Plenum Press.
34.Levin, M. A. and Gealt, M. A., 1993, Biotreatment of Industrial and Hazardous Waste. New York: McGraw-Hill.
35.Mackay, D., and McAuliff C.D., Fate of hydrocarbons discharged at sea, Oil and Chemical Pollution, Vol.5, p.1~20, 1988.
36.M.T. Balba, R. Al-Daher, and N. Al-Awadhi, 1997,”Bioremediation of oil-contaminated desert soil : the Kuwaiti experience” Environment International, vol.24, No.1/2, pp. 163-173.
37.M. Saner, D. Bollier, K. Schneider, and R. Bachofen, 1996, “Mass transfer improvement of contaminants and nutrients in soil in a new type of closed soil bioreactor” J of Biotech, vol.48. pp. 25-35.
38.M. Nocentini, D. Pinelli, and F. Fava, 2000, “Bioremediation of a soil contaminated by hydrocarbon mixtures: the residual concentration problem” Chemosphere, vol.41, pp. 1115-1123.
39.M. Ichikawa et al., 1995,”Headspace gas chromatography analysis of uncombusted gasoline dilluent in used gasoline engine oils” J.Anal.Appl.Pyrosis, vol.32, pp.233-242.
40.National Research Council, Water science and Technology Board, 1993, In Suit Bioremediation: When Does It Work? Washington, DC: National Academy Press.
41.Nelson, C. H., Hicks, R. J., Andrew, S. D., 〝In situ bioremediation : an integrated system approach〞, in Hydrocarbon Bioremediation., edited by Hinche., R. E., Alleman, B. C., Hoeppel., R. E., Miller, R. N., LEWIS POBLISHERS, pp.125-132, (1994).
42.Odu, C. T. I., 1978, 〝The effect of nutrient application and aeration on oil degradation in soil.〞, Environ. Pollut., Vol.15, pp.235-240.
43.Pennell, K. D., R. D. Rhue, P.S.C. Rao, and C.T. Johnston, Vapor-phase sorption of p-xylene and water on soils and clay minerals., Environ. Sci. Technology, Vol. 26, p756-763, 1992.
44.Pritchard, P. H., Mueller, J. G., Rogers, J. C., Kremer, F. V. and Glaser, J. A., 1992, 〝Oil spill bioremediation: experience, lessons and result from the Exxon Valdez oil spill in Alaska.〞, Biodegradation, Vol: 3, pp. 315-335.
45.Raymond, R., 1974, Reclamation of Hydrocarbon Contaminated Waters, U.S. patent 3, pp. 846-290.
46.Ronald M. Atlas, 1981, 〝Microbial Degradation of Petroleum Hydrocarbons: an Environmental Perspective.〞, Microbiological Reviews, pp.180-299.
47.Riser-roberts, E., 1992, 〝Bioremediation of Petroleum Contaminated Sites〞, CRC Press, Boca Raton.
48.R. Boopathay, 2000, “Factors limiting bioremediation technologies” Bioresource Technology, vol.74, pp.63-67.
49.Ronald M. Altlas, 1995, “Petroleum biodegradation and oil spill bioremediation” Marine Pollution Bulletin, vol.31, pp.178-182.
50.Robert E. Hinchee, 1994, “Air Sparging for Site Remediation” LEWIS PUBLISHER, pp.23-37.
51.Schwarzenbach, R.P. and Westall, Transport of nonpolar organic compounds from surface water to groundwater. Environmental science and technology, 1981.
52.Sims, J. L., R.C. Sims, R. L. Zollinger, and S. G. Huling., 1999, Prepared bed reactors. pp.559-591. In D. C. Adriano et al. (ed.) Bioremediation of contaminated soils. Agron. Monogr. Vol.37, ASA, CSSA, and SSSA, Madison, WI.
53.Song H. G. Xiaoping Wang. Bartha, R., 1990, 〝Bioremediation potential of terrestrial fuel spills〞, Appl. Environ. Microbial., Mar., pp.652-656.
54.Taylor,B.D.,1990,Environment regulations place new responsibilities on property owners.p.3-7.In E.J. Calabrese, and P.T. Kostecki(ed.)Contaminated Soils. Vol.2.Lewis Publishers, USA.
55.Thomas, J. M., J. R. Yordy, J. A. Amador, and M. Alexander., 1986, 〝Rate of dissolution and biodegradation of water- insoluble organic compound.〞, Appl. Environ. Microbial., Vol.50, pp.290-296.
56.Verstraete, W., R. Vanloocke, R. DeBorger, and A. Verlinde., 1976, Modelling of the breakdown and the mobilization of hydrocarbons in unsaturated soil layers., pp. 99-112.
57. Wilson, J. T., C. G. Enfield, W. J. Dunlap., R. L. Cosby., D. A. Foster, and L. B. Baskin, Transport and Fate of Selected Organic Pollutants in a Sandy Soil, J. Environ. Qual., Vol.10: 4, pp. 501-506, 1981.
58.Wodzinski, R. S., and D. Bertolini., 1972, 〝Physical state in which naphthalene and bibenzyl are utilized by bacteria.〞, Appl. Microbial., Vol.23, pp.1077-1081.
59.Wodzinski, R. S., and J. E. Coyle., 1974, 〝Physical state of phenanthrene for utilization by bacteria.〞, Appl. Microbial., Vol.27, pp.1081-1084.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top