(3.227.0.150) 您好!臺灣時間:2021/05/06 12:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:魏進枝
研究生(外文):Jy-Jinn Wei
論文名稱:含抑制劑苯乙烯單體基礎熱危害分析
論文名稱(外文):Fundamentally Thermal Hazard Analysis for Inhibited Styrene Monomer
指導教授:徐啟銘徐啟銘引用關係
指導教授(外文):Chi-Min Shu
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:61
中文關鍵詞:到達反應最大熱功率時間自催化反應失控反應低溫放熱行為含抑制劑苯乙烯單體
外文關鍵詞:Time to maximum rateAutocatalytic ReactionIsothermal MicrocalorimeterInhibited Styrene MonomerExothermic Polymerization
相關次數:
  • 被引用被引用:3
  • 點閱點閱:379
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
摘要
含抑制劑苯乙烯單體為化學工業重要原料之一,在常溫下有極微弱之自發性放熱聚合反應,於製造、儲存或處置時若未加於抑制,可能使溫度持續昇高,其結果為劇烈的熱爆炸、火災或毒性物質大量外洩等重大工安事故,比較其它熱危害分析熱卡計如排放設計儀器(VSP2)無法偵測到此微小放熱聚合反應之熱量。 本研究使用微差掃描熱卡計 (DSC) 進行熱掃描,可獲得聚合反應的放熱起始溫度與聚合熱,再使用多頻道微量熱卡計 (TAM) 進行接近室溫下的恆溫放熱行為量測,以提供完整的含抑制劑苯乙烯單體動力學、熱力學資料庫以及提供後續反應機制推估之參考。
本研究延續本製程與防災實驗室先前一系列研究苯乙烯單體之方法,針對含抑制劑苯乙烯單體進行低溫放熱行為分析及模擬失控反應研究,研究結果發現,含抑制劑苯乙烯單體其恆溫動力學於高溫部份 (120℃以上) 屬n階反應,而於50℃至85℃低溫部分則屬自催化反應。本研究得到含10 ppm抑制劑苯乙烯單體在低溫部份之反應階數為0.5級,活化能為53.420 kJ/mole,頻率因子為1.117×103 (1/sec),反應速率常數即為1.117×103 exp (-53,420/8.314×T),含抑制劑苯乙烯單體起始溫度與抑制劑濃度成線性正比關係,且到達最大反應速率時間對數值與溫度成線性關係。此外,上述參數可提供給製程工廠應用於低溫下含抑制劑苯乙烯單體儲存與運輸災害之預防。
ABSTRACT
Inhibited Styrene Monomer (SM) is one of the important raw materials used in the petrochemical industry. Under ambient conditions, it demonstrates extremely weak exothermic behaviors.Compared with other calorimeters used for hazard analysis, such as Vent Sizing Package2, (VSP2) which cannot detect such weak exothermic phenomena, in this research, the exothermic polymerization is characterized by an isothermal microcalorimeter, Thermal Activity Monitor (TAM) and Differential Scanning Calorimeter (DSC). Thermograms showed that SM with 10 ppm inhibitor of 4-t-butylcatechol (TBC) in the temperature range above 120℃ follows n-th order reaction. However, from 50℃ to 85℃, it follows an autocatalytic reaction. In addition, reaction order, rate constant and activation energy are verified to be 0.5, 53.419 kJ/mol and 1.117×103 exp (-53,419/8.314×T), respectively. From the experimental the exothermal onset temperature is linearly proportion to the inhibitor concentration. Meanwhile the logarithm time reach maximum reaction rate is linearly proportion to the inhibitor concentration, as well. Finally, the acquired parameters can be provided to proactively the accidents at low temperature conditions during storage and transportation.
目錄
目次 頁次
中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 viii
第一章、緒論1
1.1 研究緣起1
1.2 研究目的3
1.3 研究內容4
1.4 預期成果4
第二章、文獻回顧6
2.1 文獻資料6
第三章、苯乙烯單體與抑制劑9
3.1 苯乙烯單體9
3.1.1 苯乙烯單體特性9
3.1.2 苯乙烯單體危害與安全處置儲存 9
3.1.3 聚合反應機制 11
3.1.4 苯乙烯單體製造流程12
3.2抑制劑/第三丁基鄰苯二酚特性化學反應機制14
3.3 苯乙烯單體安全管理、運輸相關規定16
第四章、實驗方法及理論應用17
4.1 實驗設備17
4.2 儀器測試原理18
4.2.1 微差掃描熱卡計18
4.2.2 多頻道微量熱卡計20
4.3 操作流程22
4.3.1微差掃描熱卡計實驗22
4.3.2多頻道微量熱卡計實驗23
4.4 恆溫分解動力學 24
4.4.1 n階反應機制 25
4.4.2 自催化反應機制26
4.5 熱動力參數應用技術29
第五章、結果與討論 39
5.1 昇溫與恆溫熱危害分析39
5.1.1 DSC 昇溫熱聚合掃描39
5.1.2 TAM 恆溫熱聚合掃描43
5.2 反應動力學探討 45
5.2.1 反應階數求法 45
5.2.2 反應速率常數 46
5.2.3 活化能計算 49
5.2.4 頻率因子計算 50
5.2.5 動力學總體探討 51
5.3 自加速反應分解溫度計算 53
第六章、結論與建議 56
6.1 結論 56
6.2 建議 57
參考文獻 58
參考文獻
1.Barton, J. and R. Rogers, 1997, “Chemical Reaction Hazards-A Guide,”IChemE, 2nd ed.,
pp. 7-8.
2.Bond, J., 1985, “Violent Polymerization”, Loss Prev. Bull., Vol. 65, pp.21-28.
3.Boundy, R. H. and R. F. Boyer, 1952, “Styrene, Its Polymers, Copolymers, and Derivatives”, Rheinhold, New York.
4.Boyle, W. J., 1967, “Sizing Relief Area for Polymerization Reaction”, Chemical Engineering Progress. Vol. 63, No. 8, pp. 61-66.
5.Brighton, C. A., Pritchar, G., and Skinner, G. A., 1979, Styrene Polymers: Technology and Environmental Aspects, ESSEX, England, pp. 12-32.
6.Dainppon Ink and Chemicals, Inc., 1997, “4-tert-butylcatechol”, Japan.
7.Dow Chemical Company, 1967, Storage and Handing of Styrene–Type Monomer, Product Bulletin No. 2., 170-280-6M-1067.
8.Fauske, H. K., and J. C. Leung, 1985, “New Experimental Technique for Characterizing Runaway Chemical Reactions”, Chemical Engineering Progress, Vol. 81, No 8, pp. 39-46.
9.Ferguson, H. D., D. I. Townsend, T. C. Hofelich and P. M. Russell, 1994 “Reactive Chemical Hazard Evaluation: Impact of Thermal Characteristics of Transportation/ Storage Vessels”, Journal of Hazardous Materials, Vol. 37, pp. 285-302.
10.Fierz, H., P. Finck, G. Giger and R. Gygax, ”Thermal Stable Operatimg Conditions of Chemical Process”, Ciba-Geigy, Loss Prevention operating and safety promotion 4, Vol. 3, pp. A12-A21.
11.Fisher, H. G. and D. D. Goetz, 1991, “Determination of Self-accelerating Decomposition Temperatures using the Accelerating Rate Calorimeter”, J. Loss Prev. Process Ind., Vol. 4, pp. 305∼316.
12.Flory, P. J., 1953, “Chain Transfer in the Polymerization of Styrene. VIII. Chain Transfer with Bromobenzene and Mechanism of Thermal Imitation”, J. Am. Chem. Soc., Vol. 75, pp. 6133-6144.
13.Frurip, D. J., A. Chakrabarti, T. C. Hofelich, S. J. Martinez, and L. F. Whiting, 1995, “Hazard Evaluation of Polymerizable Compounds,” Process Safety Progress, Vol. 14, No. 2, pp.79-86.
14.Guidelines for Chemical Reactivity Evaluation and Application to Process Design, 1995, CCPS, AIChE, New York, pp.20-21.
15.Guidelines for Safety Storage and Handling of Reactive Materials, 1995, CCPS, AIChE, pp. 213-219, New York, USA.
16.Guidelines for Safety Storage and Handling of Reactive Materials, 1995, CCPS, AIChE, pp. 213-219, New York, USA.
17.Haward, R, N., 1950, Trans. Faraday Soc., vol. 46, pp. 204.
18.Hui, A. W., and A. E. Hamielec, 1972, “Thermal Polymerization of Styrene at High Conversions and Temperatures”, J. Appl. Polymer Sci., Vol. 16, pp.749-769.
19.Leung, J. C. and H. K. Fauske, 1986, “Thermal Runaway Reactions in Thermal Inertia Apparatus”, Thermochimica Acta, Vol. 14, pp. 13-29.
20.Malcolm P. S., 1999, Polymer Chemistry, New York, Oxford, pp. 176-183.
21.NFPA 30, 1996, “Flammable Combustible and Liquids Code”, National Fire Protection Association, MA, USA.
22.NFPA 49, 1994, “Hazardous Chemicals Data”, National Fire Protection Association, MA, USA.
23.Pryor, W. A. and L. D. Lasswell, 1970, “The Mechanism of the Initiation in the Self-Initiated “Thermal” Polymerization of Vinyl Monomer”, ACS Polymer Preprints, Vol. 11, pp.713-721
24.Shaw, D. H., and Pritchard, H. A., 1968, “Thermal Decomposition of Di-tert-butyl Peroxide at High Pressure”, Can. J. Chem., Vol. 46, pp. 2721-2724.
25.Shelley, P. G. and E. J. Sills, 1969, “Monomer Storage and Protection”, Chemical Engineering Progress, Vol. 65, No. 4, pp. 29-37.
26.Solomons, T. W. Graham, 1994, Fundamentals of Organic Chemistry, 4th Edition. New York, USA. pp. 544-550.
27.The Isothermal Calorimetric Manual for Thermometric AB, 1995, Jarfalla, Sweden (undated).
28.Zimm, B. H., and J. K. Bragg, 1952, J. Polym. Sci., Vol. 9, pp. 476.
29.工研院環安中心之重大災害資料庫,網址:http://w3.itri.org.tw/accident/
30.何大成,杜逸興,陳政任,李文亮,1995,”苯乙烯儲槽之熱爆炸分析”,第二屆化學災害預防技術研討會論文集。
31.杜逸興、高振山,「製程反應失控案例分析」,化工,第42卷第1期,頁15-27,民國86年。
32.侯宏誼,2000,異丙苯過氧化氫低溫放熱行為之研究,國立雲林科技大學,碩士論文。
33.柯清水,1991,石油化學概論,正文書局有限公司,頁344-347。
34.美國化學安全與危害調查局,網址:http://www.chemsafety.org/
35.范啟明譯,1988,塑膠材料,大中國圖書公司,頁1-8。
36.博精儀器股份有限公司,2001,FTIR客戶訓練課程,頁Ⅲ1-Ⅲ7。
37.須本一郎,1995,苯乙烯系PS.AS.ABS樹脂,復漢出版社,頁4-12。
38.路汝鑒,1991,石油化學工業,徐氏基金會出版,初版四刷。
39.陳進傳,2002,苯乙烯單體低溫放熱行為之研究,國立雲林科技大學,碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔