跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/18 14:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃啟明
研究生(外文):Chi-Ming Huang
論文名稱:以脈衝電鍍法製備Zn-Ni合金與其腐蝕行為研究
論文名稱(外文):Zn-Ni alloy pulse electrodepositionand study of corrosion behavior
指導教授:林春強林春強引用關係
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業化學與災害防治研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:175
中文關鍵詞:脈衝電鍍Zn-Ni合金腐蝕
外文關鍵詞:corrosionZn-Ni alloyPulse electrodeposition
相關次數:
  • 被引用被引用:1
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
地處亞熱帶的臺灣,四面環海,由海面吹來的海風挾帶大量的氯鹽與濕氣,故使得沿海地區空氣中的含鹽量與相對溼度偏高;再加上西部沿海地區工廠林立,而不斷的有二氧化硫排放至大氣中;故由於高濕、高鹽份再加上偏酸性的環境,而造成西部海岸地區的金屬材料腐蝕嚴重;一般而言,大氣腐蝕速率是由環境中的腐蝕因子如濕潤時間、二氧化硫沉降通量與氯鹽沉降通量來決定;另外除了金屬材料本身的抗蝕性會對腐蝕速率造成影響外,金屬材料的表面處理狀況亦會對腐蝕速率造成影響,所以先採用一勞永逸的電鍍方式來製備Zn-Ni電鍍層披覆在金屬材料上。
首先,我們以不同之電鍍條件製備不同合金比例之Zn-Ni合金電鍍層,並探討電鍍參數對於Zn-Ni性質的影響,為了了解沿海地區大氣中腐蝕因子(氯鹽與二氧化硫)濃度變化情形,必須收集大氣中沉降的二氧化硫及氯鹽,並依數據分析所得到的濃度來進行室內加速腐蝕實驗,以求得其不同之腐蝕速率;並透過實驗所得到的各項腐蝕數據、各項腐蝕因子如相對濕度、溫度、氯鹽及二氧化硫沈降通量、鍍層合金比例等來找出Zn-Ni合金電鍍層的腐蝕機構與速率關係式,另外,並以電化學Tafel curve及AC impedance 來觀察其腐蝕性質。
由實驗結果可知,鍍液溫度為影響Ni在Zn-Ni合金中的含量,在IP=150mA/cm2,T=40℃,Ton=1,Toff=4電鍍條件下,所製備之Zn-Ni合金之Ni%=11.89%,在此合金比例下由室內及室外加速腐蝕試驗可得知,其腐蝕量最小,而由所推導的腐蝕速率關係式來預測麥寮六輕工業區室外大氣腐蝕損失量,sample A(Ni=11.89%)的誤差為21.2244%,sample B(Ni=22.4%)的誤差為19.1982%,sample C(Ni=
59.21%)的誤差為21.2349%。
以電化學Tafel curve量測其不同Zn-Ni合金比例的腐蝕電位(Ec
orr)及腐蝕電流(Icorr)的結果,以含Ni%為11.89%之Zn-Ni合金有最高之腐蝕電位及最低之腐蝕電流,其值分別為Ecorr=-0.458 Volt,Icorr =8.075E-7 A/cm2(VS Ag/AgCl),利用Ac impedence 來量測其阻抗值(Rp),Ni%為11.89%之Zn-Ni合金有最高Rp值,其Rp=874.1 omh,由Nyquist圖可發現在不同Zn-Ni合金比例下,皆呈現明顯的半圓,表示反應受活化控制,由Bode圖發現,相位角在 -50~0度角變化。
以FT-IR光譜來進行腐蝕產物分析,不論室外大氣腐蝕或是室內加速腐蝕有相似產物,皆為Zn(OH)2與ZnCl2。
Taiwan is located at the subtropical zone and surrounded by the sea. The marine wind entrains much sodium chloride and moisture from the sea toward the coastal regions, so a large amount of salinity and high humidity is in the coastal region atmospheres. Furthermore, due to a great many industrial areas located in the western coastal regions, SO2 is continuously emitted to the atmosphere. Therefore, high humidity, much sodium chloride and low pH causes severely metallic corrosion in the western coastal regions. In general, the metallic corrosion rate depends on corrosion factors such as the intensity of UV, the time of wetness and Cl- /SO2 deposition rates. The metallic corrosion rate is influenced not only by metallic anticorrosion but also by metallic surface coatings. Therefore, electrodeposition that makes a great effort to accomplish coatings once for all without future trouble is chosen to prepare different electrodeposited films on steel. Next, the steel and electrodeposited films on steel are used as the specimens for laboratory accelerated corrosion tests and then the corrosion rates of the specimens are obtained. In addition, the Cl- /SO2 collected in a marine industrial area are used to calculate the Cl- /SO2 deposition rates. At the same time and location, the steel and electrodeposited films on steel are used as the specimens for natural exposure tests and then the corrosion rate of the specimens are obtained. At last, the best electrodeposited film on steel for anticorrosion of the Cl- /SO2 is gotten according to the results of laboratory accelerated corrosion tests and natural exposure tests. The correlation model between laboratory accelerated corrosion rates and natural exposure corrosion rates can also be developed by the method of convertible coefficients. So, the correlation model and corrosion factors are utilized to estimate long term atmospheric corrosion without having to carry out natural exposure tests which involve long waiting time and considerable expenses.
As the results, is the important parameter for Ni content in Zn-Ni alloy. We use parameters of electrodeposition(IP=150mA/cm2,T=40℃,Ton=1,Toff=4)to coating Zn-Ni alloy on steel, and from the results of in door accelerated corrosion tests and outdoor atmospheric, we find that the Zn-Ni alloy(Ni%=11.89%)has the minimum weight loss. In the other hand, we use the equation of corrosion rate to project the weight loss for atmospheric tests of sample(A,B,C)in Formosa Mai-Liao industrial park, the error of sample A(Ni=11.89%)is 21.2244%, the error of sample B(Ni=22.4%)is 19.1982%, the error of sample C(Ni=59.21%)is 21.2349%.
We use Tafel curve to measure Ecorr and Icorr of different composition of Zn-
Ni alloy. As the results, the Zn-Ni alloy(Ni=11.89%) has the maximum Ecorr(Ecorr
= -0.458 volt) and the minimum Icorr(Icorr= 8.075E-7 A/cm2;reference to Ag/AgCl),the other hand, we also use AC Impedance to measure the polarization resistance(Rp) of Zn-Ni, we find that Zn-Ni alloy (Ni=11.89%) has the .maximum Rp(Rp=874.1 ohm). From the Nyquist diagram of different composition of Zn-Ni alloy, we find all Zn-Ni alloy have semicircle diagram, and it indicate that the all reactions are controlled by activation. The Bode diagram show that the range of phase degree is -50 to 0.
At last, we use FT-IR to analysis the productions after corrosion tests, not only
outdoor atmospheric corrosion tests but also indoor accelerated corrosion tests, the productions of corrosion tests are Zn(OH)2 and ZnCl2.
目錄
中文摘要 Ⅰ
英文摘要 Ⅲ
誌謝 Ⅵ
目錄 Ⅶ
表目錄 Ⅸ
圖目錄 Ⅹ
第一章 緒論 1
1.1 研究動機與目的 1
第二章 文獻回顧與理論學說 3
2.1 Zn-Ni合金電鍍的發展 3
2.2 脈衝電鍍發展與原理 5
2.3 腐蝕學說 8
2.3.1 腐蝕定義 8
2.3.2 腐蝕之電化學反應 9
2.3.3 腐蝕之型態 11
2.4 金屬材料之大氣腐蝕 18
2.4.1 大氣腐蝕 18
2.4.2 Zn-Ni合金腐蝕機構 20
2.5 電化學腐蝕分析方法 21
2.5.1 Tafel外插法 21
2.5.2 交流阻抗法 23
第三章 研究方法 27
3.1 實驗材料藥品 27
3.1.1 氯鹽(Cl-)沉降實驗使用藥品 27
3.1.2 二氧化硫(SO2)沉降實驗使用藥品 27
3.1.3 Zn-Ni合金製備實驗使用藥品 28
3.1.4 室內加速腐蝕試驗使用藥品 29
3.2 實驗分析儀器設備 29
3.3 實驗步驟 31
3.3.1 Zn-Ni 合金製備 31
3.3.2 腐蝕行為研究 34
第四章 結果與討論 42
4.1 電鍍參數對於Zn-Ni合金鍍層的影響 42
4.1.1 改變鍍液溫度 42
4.1.2 改變電流密度 66
4.1.3 改變Ton及Toff 82
4.2 Zn-Ni合金中Ni含量對於合金相結構的影響 99
4.3 室內加速腐蝕 101
4.3.1 改變不同環境溫度 101
4.3.2 改變氯鹽沈降通量 106
4.3.3 改變氯鹽、二氧化硫沈降通量與乾濕比 114
4.4 室外腐蝕試驗 125
4.4.1 氯鹽沈降通量量測 125
4.4.2 二氧化硫(SO2)沈降通量量測 127
4.4.3 室外大氣腐蝕速率量測 129
4.5 室外大氣腐蝕與室內加速腐蝕關連性推導 131
4.6 電化學腐蝕量測 137
4.7 試片腐蝕表面觀測與產物分析 141
第五章 結論 146
參考文獻 148
參考文獻
1. Alfantazi, A. M., Erb, U., “Corrosion Properties of Pulse Plated Zinc-Nickel Alloy Coatings, ” Corr., 52(11), pp.880~888, 1996.
2.Ashassi-Sorkhabi, H. , Hagrah, A. , Parvini-Ahmadi, N. , Manzoori, J., “Zinc-Nickel alloy coatings electrodeposited from a chloride bath using direct and pulse current, ” Surf. Coat. Tech., 140, PP.278~283, 2001.
3. Albalat, R., Gomez, E. Muller, C. Pregonas, J. Sarret, M. Valles, E., “Zinc-Nickel
Coatings:Relationship Between Additives and Deposit Properties, ”
4. Bokris, J. ÖM., Darzic, D. M., “Electro-chemical science, ”Barnes&Noble books, New York,1972
5.Baugh, L. M., “Corrosion and Polarization Characteristics of Zinc in Neutral –Acid Media-Ⅰ.Pure Zinc in Solution of Various Sodium Salt, “ Electro. Acta, 24, pp.657-667, 1979
6.Baugh, L. M., “Corrosion and Polarization Characteristics of Zinc in Neutral –Acid Media-Ⅱ.Effect of NH4+ ions and the role of Battery Zinc Alloying Constituents,“
Elecrtochimica Acta, 24, pp.669-677, 1979
7. Baker, R. G., Holden, C. A., plating and surface finishing,p.54,1985
8. Baldwin, K. R., Robinson, M. J., Smith, C. G. E., “Corrosion Rate of Measurements Electrodeposition Zn-Ni Alloy Coating, ” Corr. Sci., 36(7), pp.1515-1531, 1994.
9. Baldwin, K. R., Smith, C.J.E., Robinson, M.J., “Cathodic Protection of Steel by
Electrodeposited Zinc-Nickel Alloy Coatings, ” Corr., 51(12), pp.932~940, 1995.
10. Chung, K. W., Kim, K. B., “A Study of the Effect of Concentration Build-up of Electrolyte on the Atmospheric Corrosion of Carbon Steel During Drying, ” Corr. Sci., 42, pp.517-531, 2000.
11. Chassaing, E., Wiart, R., “Electrocrystallization Mechanism of Zn-Ni Alloys in
Chloride Electrolyres, ” Elecrtochimica Acta., 37(3), pp.545~553, 1992.
12. De Abreu, Y., Da Silva, A., Ruiz, A., Requiz, R.; Angulo, N., Alanis, R., “Study of Zinc Coatings on Steel Substrate Attained by Two Different Techniques, ” Surf. Coat. Tech., 120-121, pp.682-686, 1999.
13. Dyckman, E. J., “ Cadmium Utilization and Environmental Impact, ” Defense
Industrial Resources Support Office (Jun 26,1975)
14. Drazic, D. M.; Vascic, V., “The Correlation Between Accelerated Laboratory Corrosion Tests And Atmospheric Corrosion Station Tests on Steels, ” Corr. Sci., 29, 10, pp.1197-1204, 1989.
15. Ericsson, R., “The Influence of Sodium Chloride on the Atmospheric Corrosion of Steel, ” Werkstoffe und Korrosion, 29, 400, 1978.
16. Felloni, L., Fratesi, R., Quadrini, E., Roventi, G., “Electrodeposition of Zn-Ni
Alloy From a Chloride Solution, ” J. App. Chem., 17(3), pp.574-582, 1987.
17.Fedrizzi, L., Ciaghi, L., Bonora, P., L., “Corrosion Behaviour of Electrogalvanized Steel in Sodium Chloride and Ammonium Sulphat Solutions; A Study by E.I.S., “ J. Appl. Electrochem., 22, pp.247-254, 1992
18. Fratesi, R., Roventi, G., “Electrodeposition of Zinc-Nickel Alloy Coatings from a Chloride Bath Containing NH4Cl, ” J. App. Chem., 22, pp.657-662, 1992.
19. Fratesi, R., Roventi, G., Brang C., Simoncini, S., “Corrosion Resistance of Zn-Co Alloy
Coatings”, Surf. Coat. Tech., 63, pp.97~103,1994.
20.Fratesi, R., Roventi, G., “Effect of Nickel Impurities on Zinc Electrodeposition, “
J. Appl.Electrochem.,10, pp.765-774, 1980
21.Giridhar, J. , Ooij, W.J.van , “Study of Zn-Ni and Zn-Co alloy coatings electrodeposition on steel strips Ⅱ: Corrosion, dezincification and sulfidation of the alloy coatings, ” Surf. Coat. Tech., 53, pp.35~47, 1992.
22. Hsu, Grace F., “Zinc-Nickel Alloy plating:An Alternative to Cadmium, ” Plat.
Surf. Finish., 71, pp.52~54, 1984.
23. Higashi, Kei ,Fukushima, Hisaaki ,Urakawa, Takayuki , “Mechanism of the
Electro deposition of Zinc Alloys containing a Small Amount of Cobat, ” J.
Electrochem . Soc., 1128, pp.2081~2085, 1981.
24. ISO 9223, “Corrosion of Metal and Alloys - Classification of Corrosion of Atmospheres”.
25. Ibl, N., “Some Theoretical Aspects of Pulse Electrolysis, “ Surf. Tech., 10, pp.81-
104, 1980
26. Ibl, N., Puippe, “Influence of Charge and Discharge of Electric Double Layer in
Pulse Plating, “J. Appl.Electrochem., 10, pp.775-784, 1980
27.Ibl, N., Puippe, J., Cl., Angerer, H., “Electrocrystallization in Pulse Electrolysis, “
Surf. Tech., 6, pp.287-300, 1987
28. Jones, Denny A., Nair, Ramachandran N. , “Electrochemical Corrosion Studies On Zinc-Coated Steel, ” Corr., 41(6), pp.357~362, 1985.
29. Kao, C. H., Chang, C. C., Lee, T. S., “A Comparison of Cadmium Electroplate and Some Alternatives, ” Plat. Surf. Finish., 78, pp.46~50, 1991.
30. Kalantary, Majid R., “Zinc Alloy Electro deposition for Corrosion Protection, ” Plat. Surf. Finish., 81, pp.80~88, 1994.
31. Loar, Gary W., Romer, Klaus R., Aoe, Tetuhiro J., “Zinc Alloy Electrodeposition For Improve Corrosion Protection, ” Plat. Surf. Finish., 78, pp.74~79, 1991.
32. Lobnig,R. E.,”Atmospheric Corrosion of Zinc in the Presence of Ammonium Sulfate Particals”﹐J. Electrochem. Soc.﹐143﹐pp.1539-1546.,1996
33.Maksimovic, M., D., Dimitrijevic, Z., S., “Fundamental Aspects of Pulsating Curr-
ent Metal Electrodeposition V:the Determination of the Optimal Frequency Range, “ Surf. Tech., 17, pp.3-9, 1982.
34.Maksimovic, M., D., Zecevic, S., K., “Influence of the Double-Layer Capacity in Periodically Changing Rate Metal Electrodeposition,“ Surf. Coat. Tech., 30, pp.405- 413, 1987.
35. Nriagu, J. O., “Determination Effect of Sulfur Pollution on Materials, ” Sulfur in the Environment, John Wiley, New York, 1978.
36. Natorski, Theodore J., “Zinc and Zinc Alloy Plating in the‘90s, ” Met. Finish., pp. 15~17, 1992.
37. Morcillo﹐M. et al.﹐2000﹐”Salinity in Marine Atmospheric Corrosion: Its Dependence on the Wind Regime Existing in the Site”,Corrosion Science﹐vol. 42﹐pp91-104.
38. Oesch, S., “The Effect of SO2, NO2, NO And O3 on The Corrosion of Unalloyed Carbon Steel And Weathering Steel-The Results of Laboratory Exposures, ” Corr. Sci., 38, 8, pp. 1357-1368, 1996.
39. Pearson, T., Dennis, J. K., “Facts and Fiction about Pulse Plating, ” Trans. Inst.
Metal. Finish., 69(3), pp.75~79, 1991.
40.Pearson, T., Dennis, J. K., “The Effect of Pulsed Reverse Current on the Polariz-
ation Behaviour of Acid Copper Plating Solutions Containing Organic Additives, “ J. Appl.Electrochem.,20, pp.196-208
41. Shears, A. P., “Zinc Cobalt Deposits from an Acid Chloride Electrolyte, ” Trans. Inst. Met. Finish., 67(3), pp.67-69, 1989.
42.Shastey, C. R., Townsend, H. E., “Mechanisms of Cosmetic Corrosion in Painted Zinc and Zinc –Alloy-Coated Sheet Steels,“ Corr., 45(2),pp.103-119, 1989.
43. Sereda, P. J., “Weather Factor Affecting Corrosion of Metals, ” ASTM STP 558, 7, 1974.
44. Sharples, T. E., “Zn-Co: Fight Corrosion in the 90’s, ” Prod. Finish., 54(6), pp.38-44, 1990.
45. Sidney Oswaldo Pagotto, Jr., Célia Marina de Alvarenga Freire, Margarita Ballester, “Zn-Ni alloy deposits obtained by continuous and pulsed electro-
deposition processes, ”Surf. Coat. Tech., 122, pp.10-13, 1999.
46. Tomashov, N. D., “Theory of Corrosion and Protection of Metals, ” Macmillen, New York, 1966.
47. Vernon, W. H. J., “Second Experimental Report to the Atmospheric Corrosion Research Committee, ” Trans. Faraday Soc., 23, 113, 1927.
48. Vera Cruz, R. P., Nishikata, A., Tsuru, T., “Pitting Corrosion Mechanism of Stainless Steels under Wet-Dry Exposure in Chloride-Containing Environments, ” Corr. Sci., 40(1), pp. 125-139, 1998.
49.Wan, C., C., “A Study of Electrochemical Kinetics of Copper Deposition Under Pulsed Current Condition, “ J. Appl. Electrochem., 9, pp.29-35, 1979
50. Wilcox, G. D., Gabe, D.R., “Electrodeposition Zinc alloys coatings, ” Corr. Sci., 35, pp.1251~1258, 1993.
51. Walter, G. W., “A Review of Impedance Plot Methods used for Corrosion Per-
formance analysis of Painted Metals, ”Corr. Sci.,26(9), pp.681-703, 1986
52. Wu, Zhong Da, Fedrizzi, L., Bonora, P.L., “Electrochemical studies of Znic-
Nickel codeposition in chloride baths, ”Surface and Coating
53. Zaki, N., “Zinc-Nickel Alloy Plating, “Met. Finish, 6, pp.57-60, 1989
54. 王月,熊楚強,「電化學」,文京圖書出版社,民國86年。
55. 田福助,吳溪煌,「電化學-理論與應用」,新科技書局,民國78年。
56. 汪建民,「材料分析」,中國材料科學學會,民國87年。
57. 洪愛娜,「脈衝電鍍」,電子與材料,第五期,第70~74頁。
58. 郭勇,「鍍鋅鋼片之耐蝕性與上漆性評估介紹」,防蝕工程,第六卷第二期,
第24∼35頁,民國81年6月。
59. 陳勤志,「螺絲螺帽檢測技術探討-鹽霧試驗」,金屬工業,第三十二
卷第三期,民國87年5月。
60. 黃滿庭譯,「鍍鋅合金在汽車工業的應用」, 表面技術雜誌,第159期,第
36~46頁,民國85年1月。
61. 張錦泉,「電化學極化法與阻抗頻譜的原理與應用」,授課講義。
62. 劉俊英等,「台灣地區大氣腐蝕特性研究」,台電工程月刊,第498期,民國79年2月。
63. 劉富雄,「防蝕技術」,全華科技圖書,民國88年
64. 鄭福田,「台灣地區大氣腐蝕環境因子調查」, 材料大氣腐蝕研討會論文集,民國80年6月。
65. 鄭錦榮,「鍍鋅鋼鐵與耐候鋼鐵大氣腐蝕模擬實驗」,第495期,民國78年11月。
66. 鄭錦榮,「重鹽害地區金屬材料大氣腐蝕資料調查與分析」, 台電工程月刊, 527期,民國81年7月。
67. 樊其芬,「用交流阻抗法測鍍膜之性能」,表面技術雜誌,第140期,民國82年3月。
68. 謝曉華譯 ,「日本汽車業使用鍍鋅鋼板之發展」,防蝕工程,第六卷第二期,第36~46頁,民國81年6月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top