(18.206.187.91) 您好!臺灣時間:2021/05/19 02:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蘇勇誌
研究生(外文):Youn-chih Su
論文名稱:平整劑與加速劑在印刷電路板製程中對填孔電鍍的影響
論文名稱(外文):Influence of Leveler and Accelerator on Via-Filling Plating for Printed Circuit Board
指導教授:竇維平
指導教授(外文):Wei-Ping Dow
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業化學與災害防治研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:147
中文關鍵詞:填孔電鍍盲孔電鍍銅添加劑增層法印刷電路板
外文關鍵詞:additivesPEGcoppervia-fillingSPSIC subtrateelectroplating
相關次數:
  • 被引用被引用:15
  • 點閱點閱:5151
  • 評分評分:
  • 下載下載:402
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要對於IC-Substrate電鍍塞孔製程技術之電鍍添加劑配方加以研究,透過LSV (linear sweep voltammetry)、CV(Cyclic Voltammetry)、定電流掃描(Galvanostats)等方式,深入研究與分析,以瞭解電鍍塞孔機構。實驗中所使用的添加劑為PEG(polyethylene glycol)、Cl-、SPS(bis(3-Sufopropy)disulfide)及JB(diazine black)。
為有效控制填孔條件,在提高SPS使用濃度後添加JB則有助於維持填孔能力。由掃瞄式電子顯微鏡SEM(Scanning Electron Microscope)得知,在不同添加劑配方下鍍膜,JB是很好的細晶劑,配合PEG、Cl-、SPS的添加則能得到細緻的沉積效果,而鍍膜的蝕刻速率隨著配方中JB濃度增高而下降;再由X-ray粉末繞射儀XRPD(X-Ray Powder Differactometer)實驗所計算得知,晶粒大小亦隨JB濃度增加而有變大的趨勢,因此過多的JB導致鍍膜形成霧面。由定電流掃描與CV結果得知,單獨添加SPS在電鍍過程中會抑制銅沉積,必需添加Cl-才能形成加速劑,但銅膜若單獨浸泡在SPS溶液中會形成一價銅錯化合物,則具有加速銅沉積效果,但一價銅錯化合物的加速效果會隨電鍍過程中而消失。此外,在電鍍過程中,SPS會在電極表面產生含硫的錯化合物,由定電流掃描下發現此硫錯化合物會隨著銅膜的成長而位移,並維持在電極表面上,此錯化合物會降低PEG+Cl-的抑制能力,導致PEG+Cl-無法在孔內動作,也因此形成孔內SPS取代PEG,造成孔內外抑制能力不同形成Via-Filling的效果。
由實際的盲孔板塞孔電鍍的結果證實, PEG 200 ppm 、Cl- 60 ppm、SPS 1 ppm、JB 1 ppm配方能有很好的填孔效果。電鍍塞孔的關鍵就是在於SPS對PEG的取代,也因此電鍍前的浸置有助於孔內加速劑對抑制劑的取代;因此當SPS過量時會造成表面抑制力不足而喪失填孔能力,當加入平整劑則可減緩加速劑的面銅的加速能力,維持表面抑制功能,進而達到期待的Via-Filling。
The thesis is to study the formula employed for via-filling plating that is applied to IC substrate fabrications. Electrochemical methods employed include linear sweep voltammetry (LSV), galvanostats, and cyclic voltammetry (CV) over a rotating disk electrode in order to explore and analyze the mechanism of filling plating. The additives adopted in this study are PEG (polyethylene glycol), Cl-, SPS[bis(3-sulfopropy)disulfide], and JB(diazine black).
In order to control the filling conditions efficiently, adding JB into the plating solution can maintain the filling capability when SPS concentration is increased to be higher one. According to the SEM images, JB is confirmed to be a good refiner for metal finishing when it mixes with PEG, Cl-, and SPS. Likewise, the etching rate of the copper deposit obtained from the formulated plating solution decreases with an increase in JB concentration. According to the calculation to X-ray power differactometer (XRD), JB concentrate can significantly affect the grain size of copper deposit. Namely, the higher the JB concentration, the bigger the grain size. Consequently the appearance of the copper deposit become mat while JB concentration is too high. According to the results obtained from galvanostats and CV, adding SPS alone into the plating solution will hinder copper deposition. SPS + Cl- are demonstrated to be the practical accelerator in the electrolyte. A Cu(I)-complex is formed on the copper surface when the test board is dipped into the solution containing SPS alone. This Cu(I)-complex is vary easily reduced to be metallic copper by electroplating. Hence, it easily disappears during electroplating. It also finds that some kind of sulfide-complex obtained from SPS adsorption will stay on the electrode surface. According to the galvanostats, the sulfide-complex always adsorbs on the surface of copper deposit and moves upward with the copper growth and remains at the copper surface. This sulfide-complex can degrade the inhibiting effect caused by PEG+Cl-. Therefore, PEG+Cl- cannot work in the via hole. This consequently results in the super-filling behavior.
The practical case of via-filling plating confirms that PEG 200 ppm, Cl- 60 ppm, SPS 1 ppm, and JB 1 ppm is a good formula for via-filling. The key factor resulting in super-filling behavior is PEG replacement by SPS. Therefore, pre-dip of test board in the plating solution is beneficial to inhibitor replacement by accelerator before electroplating is carried out. If the SPS concentration is too high to perform the super-filling behavior due to the lack of inhibiting effect on board surface. Under this condition, adding leveler can degrade the accelerating effect of accelerator in copper growth deposited on board surface. Consequently, the inhibiting effect caused by both leveler and PEG+ Cl- can remain at the board surface and perform the super-filling behavior.
中文摘要 -------------------------------------------------------------------------- i
英文摘要 -------------------------------------------------------------------------- iii
誌謝 -------------------------------------------------------------------------- v
目錄 -------------------------------------------------------------------------- vi
表目錄 -------------------------------------------------------------------------- ix
圖目錄 -------------------------------------------------------------------------- x
符號說明 -------------------------------------------------------------------------- xiii
一、 緒論--------------------------------------------------------------------- 1
1.1 填孔電鍍的由來------------------------------------------------------ 1
1.2 填孔電鍍技術的演進------------------------------------------------ 2
1.2.1 傳統多層板的製作--------------------------------------------------- 2
1.2.2 埋孔與盲孔之非機鑽式鑽孔方式--------------------------------- 4
二、 理論與文獻回顧------------------------------------------------------ 10
2.1 極化原理--------------------------------------------------------------- 10
2.1.1 活性極化--------------------------------------------------------------- 10
2.1.2 濃度極化--------------------------------------------------------------- 11
2.1.3 電阻極化--------------------------------------------------------------- 11
2.2 影響填孔電鍍的方式------------------------------------------------ 12
2.2.1 一次電流分佈--------------------------------------------------------- 12
2.2.2 二次電流分佈--------------------------------------------------------- 13
2.2.3 平滑力------------------------------------------------------------------ 13
2.2.4 攪拌--------------------------------------------------------------------- 14
2.2.5 陽極--------------------------------------------------------------------- 15
2.3 電鍍的方法------------------------------------------------------------ 16
2.4 添加劑的種類對電鍍的影響--------------------------------------- 18
2.4.1 加速劑------------------------------------------------------------------ 18
2.4.2 平整劑------------------------------------------------------------------ 20
2.4.3 抑制劑------------------------------------------------------------------ 21
2.4.4 氯離子------------------------------------------------------------------ 22
2.5 填孔電鍍的實例------------------------------------------------------ 23
2.6 Bottom up 理論機構與數學模擬---------------------------------- 30
2.7 研究動機--------------------------------------------------------------- 39
三、 實驗材料、設備、流程與方法------------------------------------ 41
3.1 藥品--------------------------------------------------------------------- 41
3.2 器材設備--------------------------------------------------------------- 43
3.3 分析儀器--------------------------------------------------------------- 45
3.4 實驗方法與步驟------------------------------------------------------ 51
3.4.1 實驗流程圖------------------------------------------------------------ 51
3.4.2 盲孔板製備------------------------------------------------------------ 52
3.4.3 哈林槽填孔電鍍實驗步驟------------------------------------------ 53
3.4.4 恆電位儀實驗步驟--------------------------------------------------- 55
四、 實驗結果與討論------------------------------------------------------ 59
4.1 平整劑對填孔電鍍的影響------------------------------------------ 59
4.1.1 單獨添加劑的填孔效果--------------------------------------------- 59
4.1.2 使用混劑的填孔效果------------------------------------------------ 66
4.1.3 平整劑JB對電鍍銅膜的影響-------------------------------------- 76
4.1.4 小結--------------------------------------------------------------------- 81
4.2 IC的銅製程填孔機構是否適用於PCB的填孔機構---------- 83
4.2.1 單獨添加劑的電化學反應------------------------------------------ 83
4.2.2 混劑的擴散現象與吸附作用--------------------------------------- 94
4.2.3 添加劑在電極上吸附能力的比較--------------------------------- 109
4.2.4 孔銅結構對PEG+Cl-抑制作用影響------------------------------- 118
4.3 以電化學分析方法作為填孔能力預測--------------------------- 132
五、 結論--------------------------------------------------------------------- 138
六、參考文獻 --------------------------------------------------------------------------- 140
自傳 --------------------------------------------------------------------------- 147
[1] W. C. Tsai, C. C. Wan, and Y. Y. Wang, “Frequency Effect of on the Uniformity of Copper Deposition in Platted Through Holes” J.
Electrochem.Soc., 150,C267-C272,(2003).
[2] T. Kobayashi, J. Kawasaki, K. Mihara, H. Honma, “Via-filling Using Electroplating for Build-up PCBs” Electrochem. Acta, 47,85-89,(2001).
[3] 白蓉生, “增層法多層板與非機械式導孔” 電子與材料季刊, (1999).
[4] 田福助, ”電化學基本原理與應用”, 五洲出版社, (1999).
[5] 萬海威, ”多層印刷電路板之鍍銅製程”,電路板之訊雜誌7,24,(1988)
[6] 方景禮, ”電鍍添加劑總論”, 表面技術雜誌, 161, (1996).
[7] S. C. Chang, J. M. Shieh, K. C. Lin, B. T. Dai, T. C. Wng, C. F. Chen, and M. S. Feng “Investigations of Effects of Bias Polarization and Chemical Parameters on Morphology and Filling Capability of 130 nm Damascene Electroplated Copper” J. Vac. Soc. Technol., 19,
767-774, (2001).
[8] 劉顯榮, ”鍍銅陽極面面觀” 電路板資訊, 41,63-73,(1991).
[9] C. H. Seah, S. Mridha, and L. H. Chan, “DC/Pulse Plating of Copper for Trench/Via Filling” J. Materials Processing Technol., 114, 233-239,
(2001).
[10] T. Kobaykhshy, J. Kawasaki, K.Mihara, T.Wamashita, and H.Honma, “Influence of Bath Composition to Via-Filling by Copper Electroplating” J. Japan Institute of Electronics, 3, 324-329,(2000).
[11] J. P. Healy and D. Pletcher, “The Chemistry of Additive in an Acid Copper Electroplating Bath Part II. The Instability of 4, 5-dithioctane-1,8-disluphonic acid in the Both on Circuit”
J.Electroanal.Chem., 338, 167-177,(1992).
[12] J. P. Healy and D. Pletcher, “The Chemistry of Additive in an Acid Copper Electroplating Bath Part III. The Mechanism of Brightening 4,5-dithioctane- 1,8-disluphonic acid in the Both on Circuit” J.
Electroanal.Chem., 338,179-187,(1992).
[13] A. Frank, and A. J. Bard, “The Decomposition of the Sulfonate Additive Sulfopropyl Sulfonate in Acid Copper Electroplating
Chemistries” J. Electrochem. Soc., 150,C244-C250,(2003).
[14] J. J. Kim, S. K. Kim, Y. S. Kim, “Catalystic behavior of 3-mercapto-1-propance Sulfonic Acid on Cu Electrodeposition and its Effect on Cu Film Properties for CMOS Device Metllization” J.
Electroanal.Chem., 542,61-66,(2003).
[15] T. P. Moffat, B. Baker, and D. Josell, “Accelerator Aging Effects During Copper Electrodeposition” Electrochem. Solid-State Lett.,
6,C59-C62,(2003).
[16] J. J. Kelly, and A. C. West “Copper Deposition in the Presence of Polyethylene Glycol” J.Electrochem. Soc.,145(10),3472-3476,(1998)
[17] K. C. Lin, J. M. Shieh, S. C. Chang, B. T. Dai, C. F. Chen, and M. S. Feng, “Electroplating Copper in Sub-100nm Gaps by Additives with Low Consumption and Diffusion Ability” J. Vac. Sci. Technol., 20,
940-945,(2002).
[18] M. Yokoi, S. Konishi, and T. Hayashi, “Adsorption Behavior of Polyoxyethyleneglycole on the Copper Surface in an Acid Copper
Sulfate Bath” Denki Kagaku, 52, 218-223,(1984).
[19] L. Bonou, M. Eyraud, R. Denoyel, and Y. Massiani, “Influence of additives on Cu electrodeposition mechanisms in acid solution: direct current study supported by non-electrochemical measurements”
Electrochim. Acta 47 , 4139-/4148,(2002).
[20] G. M. Brown, G. A. Hope, “A SERS Study of SO42- / Cl- Ion at a Copper Electrode in-situ ” J. Electroanal. Chem., 405, 211-216,(1996).
[21] H. G. Creutz, R. M. Stevenson, and E. A. Romanowski, “Electrodeposition of Copper from Acid Baths”, U.S. Pat. 3,267,010,
(1966).
[22] P. C. Andricacos, C. Uzoh, J. O. Dukvic, J. Horkans, and H. Deligianni, ”Damascene Copper Electroplating for Chip
Interconnections” IBM J. Res. Develop. 42, 567-572,(1998).
[23] J. J. Kelly, and A. C. West, “Leveling of 200 nm Features by Organic
Additives” Electrochem. Soc., 2,561-563,(1999).
[24] P. Taephaisitphonges, Y. Cao, and A. C. West “Electrochemical and Fill Studies of Multicomponent Additive Package for Copper Deposition” J. Electrochem., Soc., 148,C492-C497,(2001).
[25] J. J. Sun, K. Kondo, T. Okamura, S. Oh, M. Tomisaka, H. Yonemura, M. Hoshino, and K. Takahashi, “High-Aspect-Ratio Copper Via Filling Used for Three-Dimensional Chip Stacking” J. Electrochem.
Soc., 150,G355-G358,(2003).
[26] T. P. Moffat, J. E. Bonevich, W. H. Huber, A.Stanishevsky, D. R. Kelly, G. R. Stafford, and D. Josell, “Superconformal Electrodeposition of Copper in 500-90 nm Features” J. Electrochem. Soc., 147,4524-4535,
(2000).
[27] C. Lingk and M. E. Gross, “Recrystallization Kinetics of Electroplated Cu in Damascene Trenches at Room Temperature” J. Appl. Phys., 84,
5547-5553,(1998).
[28] J. M. E. Harper, C. Cabrl, Jr. , P. C. Andricacos, L. Gignac, I. C. Noyan, K. P. Rodbell, and C. K. Hu, “Mechanisms for Microstructure Evolution in Electroplated Copper Thin Films Near Room
Temperature” J. Appl. Phys., 86, 2516-2525,(1999).
[29] D. N. Buckley, and S. Ahmed, “Real Time Observation by Atomic Force Microscopy of Spontaneous Recrystallization at Room Temperature in Electrodeposited Copper Metallization ”,
Electrochem.Solid-State Lett., 6,C33-C37,(2003).
[30] M. Hayase,a, M. Taketani, K. Aizawa, T. Hatsuzawa, and K. Hayabusab, “ Copper Bottom-up Deposition by Breakdown of PEG-Cl Inhibition” Electrochem. and Solid-State Lett., 5 ,C98-C101,(2002).
[31] M. Kang, M. E. Gross, and A. A. Gewirth, “Atomic Force Microscopy Examination of Cu Electrodeposition in Trenches” J. Electrochem.
Soc.,150,C292-C301,(2003).
[32] J. Reid, C. Gack, and S. J. Hearne, “Cathodic Depolarization Effect During Cu Electroplating on Patterned Wafers” Electrochem.
Solid-State Lett., 6,C26-C29,(2003).
[33] A. C. West, C. C. Cheng, B. C. Baker ‘Pulse Reverse Copper Electrodeposition in High Aspect Ratio Trenches and Vias‘ J.
Electrochem. Soc., 145,3070,(1998).
[34] A. C. West, “Theory of Filling of High-Aspect Ratio Trenches and Vias in Presence of Additives” Electrochem. Soc., 147,227-232,(2000).
[35] Y. Cao, P. Taephaistphongse, R. Chalupa, and A. C. West, “Three-Additive Model of Superfilling of Copper” J. Electrochem.
Soc., 148, C466-C472,(2001).
[36] A. C. West,a, S Mayer, and J. Reidb, “A Superfilling Model that Predicts Bump Formation” Electrochem. and Solid-State Lett.,
4 ,C50-C53,(2001).
[37] T. P. Moffat, D. Wheeler, W. H. Huber, and D. Josell, “Superconformal Electrodeposition of Copper” Electrochem.
Solid-State Lett., 4,C26-C29,(2001).
[38] D. Josell, D. Wheeler, W. H. Huber, J. E. Bonevich, and T. P. Moffat, “A Simple Equation for Predicting Superconformal Electrodeposition in Submicrometer Trenches” J. Electrochem. Soc., 148, C767-C773,
(2001).
[39] J. Reid “Copper Electrodeposition:Principles and Recent Progree” Jpn. J. Appl. Phys., 40,2650-2657,(2001).
[40] K. R. Hebert, “Analysis of Current-Potential Hysteresis During Electrofeposition of Copper with Additives” J. Electrochem. Soc., 148,
C726-C732,(2001).
[41] Y. H. Im, M. O. Bloomfield, S. Sen, and T. S. Cale, “Modeling Patten Density Dependent Bump Formation in Copper Electrochemical
Deposition” Electrochem. Solid-State Lett., 6,C42-C46,(2003).
[42] M. Tan, and J. N. Harb, “Additive Behavior during Copper Electrodesition in Solution Containing Cl-, PEG, and SPS” J.
Electrochem. Soc., 150, C420-C425,(2003).
[43] H. P. Lee, and K. Nobe, “Film Formation and Current Oscillations in the Electrodissolution of Cu in Acidic Chloride Media” J.
Electrochem. Soc., 132, 1031-1037,(1985).
[44] A. Frank, and A. Bard, “The Decomposition of the Sulfonate Additive Sulfopropyl Sulfonate in Acid Copper Electroplation Chemistries”
J. Electrochem. Soc., 150, C244-C250,(1993).
[45] T. Pearson, and J. K. Dennis, “Effect of pulsed reverse current on the structure and hardness of copper deposits obtained from acidic electrolytes containing organic additives” Surf. and Coatings Technol., 42, 69-79, (1990).
[46] L. T. Koh, G. Z. You, C. Y. Li, P. D. Foo, “Investigation of the Effect of Byproduct Components in Cu Plating for Advanced Interconnect
Metallization” Microelectronics Journal, 33, 229-234,(2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top