(3.238.173.209) 您好!臺灣時間:2021/05/15 15:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂俐瑩
研究生(外文):Li-In Lu
論文名稱:以幾丁寡醣修飾平面式葡萄糖生物感測器之研究
論文名稱(外文):Study on the chitosan oligosaccharide Modified Planar Glucose Biosensor
指導教授:陳文章陳文章引用關係
指導教授(外文):Wen-Chang Chen
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業化學與災害防治研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:96
中文關鍵詞:葡萄糖生物感測試片幾丁寡醣電流量測法
外文關鍵詞:Glucose biosensor stripschitosan oligosacchari
相關次數:
  • 被引用被引用:7
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在結合網印碳電極與葡萄糖氧化酶,並利用溶於幾丁寡醣溶液之赤血鹽作為電子傳導介質,以製備平面式葡萄糖生物感測試片。分別以循環伏安法與掃描式電子顯微鏡探討未添加葡萄糖氧化酶之感測試片應答特性與表面特性分析,結果顯示循環伏安圖之氧化、還原尖峰電流與掃描速率平方根之間均具線性關係,故可得知此感測系統歸屬可逆性之電化學反應系統。經由定電流計時電位法之量測,發現幾丁寡醣之添加,可增高電極表面處之赤血鹽濃度,從而提升陰極極限電流;此外,經由定電位計時電流法之量測,亦發現檢測系統之 pH 值於 6.0-9.0 間,可忽略酸鹼值對試片之背景電流之影響。本研究之結果顯示此葡萄糖生物感測試片除具有高靈敏性外,其檢測葡萄糖之應答時間可短至 15 秒以下,線性應答範圍則約為 0-500 mg/dl。
An amperometric glucose biosensor strip was fabricated by coating ferricyanide modified with chitin-oligomer and the enzyme glucose oxidase (GOD) on screen-printed carbon electrodes. Sensor strips without GOD were characterized by cyclic voltammetry (CV) and scanning electron micrograph (SEM). A linear relation between peak current and square root of scan rate where the linear line passes through origin suggests reversible electrochemistry of chitin-oligomer modified ferricyanide. Results from chronopotentiometric (CP) measurements showed that an increase of cathodic limiting current was resulted from an increase of ferricyanide concentration on the electrode surface, which could be attributed to the addition of chitin-oligomer. Moreover, results from chronoamperometric (CA) measurements indicated that pH effect on the background current of the sensor strips could be neglected in the range between 6.0 and 9.0. Furthermore, this glucose-sensing system exhibited high sensitivity, a short response time (< 15 s), and a wide linear response range (0-500 mg glucose/dl).
目 錄
頁次
中文摘要 …………………………………………………… I
英文摘要 …………………………………………………… II
誌謝 …………………………………………………… III
目錄 …………………………………………………… IV
表目錄 …………………………………………………… VII
圖目錄 …………………………………………………… VIII
第一章 緒論………………………………………………. 1
1-1 前言………………………………..……….…….. 1
1-1-1 生物感測器之定義……..………………………... 3
1-1-2 生物感測器之發展史……………………………. 3
1-1-3 生物感測器之分類……...……………………….. 6
1-1-4 葡萄糖感測器之反應機制……………..………... 16
1-1-5 電子傳導媒介 (mediator)……………………….. 17
1-2 幾丁聚醣之特性探討及其在醫學領域上的研究與應用……………………………….…………… 18
1-2-1 幾丁寡醣之簡介……………………….……..….. 21
1-2-2 幾丁寡醣之基本性質..…………………………... 22
1-2-3 幾丁寡醣之應用.………….……..………..……... 22
1-3 研究目的及重點…………………………………. 24
第二章 理論基礎………………………………………..... 26
2-1 法拉第程序………………………………………. 28
2-2 線性掃描伏安分析法……………………………. 30
2-3 計時安培分析法…………………………………. 32
2-4 計時電位分析法…………………………………. 34
第三章 實驗方法…………………………………………. 37
3-1 藥品與材料………………………………………. 37
3-2 儀器………………………………………………. 38
3-3 其他設備…………………………………………. 39
3-4 溶液之配置………………………………………. 39
3-5 實驗步驟…………………………………………. 43
3-5-1 葡萄糖氧化酵素最適作用之pH值…………....... 43
3-5-2 葡萄糖生物感測系統之應答……………………. 43
3-5-3 製備電流式葡萄糖生物感測器之最適條件探討. 44
3-5-4 電子媒介物修飾於葡萄糖生物感測系統之最適條件選定………………………………………… 44
3-5-4-1 最適pH值之探討……………………………..… 44
3-5-4-2 最適赤血鹽濃度之探討…………...……………. 45
3-5-4-3 不同掃描速率之比較………….. ………………. 45
3-5-5 以幾丁寡醣修飾可行性之確立………………… 46
3-5-5-1 以幾丁寡醣修飾於系統與未加修飾系統之比較. 46
3-5-5-2 利用充放電效應解釋幾丁寡醣修飾之可行性.... 46
3-5-5-3 不同濃度之幾丁寡醣修飾之特性探討…............ 46
3-5-6 不同掃描速率之比較…………………………… 47
3-5-7 葡萄糖生物感測器之背景校正曲線…………… 47
3-5-8 葡萄糖生物感測器之校正曲線………………… 48
第四章 結 結果與討論…...…………………………….…… 49
4-1 葡萄糖氧化酵素最適作用之pH值…………..… 49
4-2 含電子傳導媒介之葡萄糖生物感測器應答催化原理………………………………………………. 53
4-3 電子傳導媒介修飾於葡萄糖感測系統受pH值影響之測試………………………..………............... 56
4-4 不同濃度電子傳導媒介修飾於葡萄糖感測系統影響之測試..……………………………………... 58
4-5 電子傳導媒介修飾於葡萄糖感測系統不同掃描速率之比較……………………..………............... 60
4-6 葡萄糖生物感測器之實現與檢量特性的研究...... 62
4-7 幾丁寡醣修飾可行性之確立……………………. 67
4-8 計時電位法檢測感測器系統中儲能特性之比較. 70
4-9 不同濃度之幾丁寡醣修飾感測系統對應答之影響……………………………………………......... 75
4-10 經幾丁寡醣修飾葡萄糖感測器於不同掃描速率循環伏安之比較…………………………………. 78
4-11 以幾丁寡醣修飾前與修飾後葡萄糖生物感測器於不含葡萄糖之背景電流觀察…………………. 80

4-12 以幾丁寡醣修飾前與修飾後葡萄糖感測器對不同濃度葡萄糖之電流應答曲線………………… 82
4-13 微觀下之電極表面型態觀察…………………… 86
第五章 結論…………………………………………………………... 90
參考文獻……………………………………………………………… 92
參考文獻
[1]台北榮民總醫院http://www1.vghtpe.gov.tw/webser4
[2]M. Aizawa, T. Seyama, K. Fueki, J. Shiokawa, S. Suzuki. 1983. Proceedings of the International Meeting of Chemical Sensors, Fukuoka, Elsevier, Amsterdam, 683.
[3]田蔚城,1997,生物技術的發展與應用,九州圖書,303-320。
[4]S. J. Updick and G. P. Hicks. 1967. The enzyme electrode, Nature, 214, 986-988.
[5]R. S. Sethi. 1994. Transducer aspects of biosensors, Biosensors & Bioelectronics, 9, 243-264.
[6]陳治誠,1993,生物感測器技術簡介,科儀新知,第十五卷第二期,71-81。
[7]江榮隆,1997,非晶形三氧化鎢場效型離子感測元件之研究,國立雲林技術學院電子與資訊工程研究所,碩士論文。
[8]M. Lambrechts, W. Sansen. 1992. Biosensors:Micro-electrochemical devices, Institute of Physics, London, IOP publishing Ltd., p59-66.
[9]J. T. Kulys, N. K. Cenas, 1983, Oxidation of glucose oxidase from penicillium vitale by one-and two-electron acceptors, Biochim. Biophys. Acta 744, p57-63.
[10]W. Schuhmann, 1993, Amperometric enzyme electrodes based on conducting polymers and modified enzymes, Proceedings of Bioelectroanalysis 2 Ed. E. Pungor. 11-15, p113-138.

[11]P. R. Austin, C. J. Brine, J. E. Castle, J. P. Zikakis, 1996, New facets of research, Science 212(4496), p749.
[12]T. Chandy and C. R. Sharma, 1990, Polyelectrolyte membranes from chitosan, Acta Polym. 41, p198-199.
[13]M. N. Taravel, A. Domard, 1994, Competition between gel and polyanion- polycation complex formation in a collagen-chitosan binary system, Macromolecul. Reports A31, p1237-1245.
[14]H. Huang, N. Hu, Y. Zeng, and G. Zhou, 2002, Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films, Analytical Biochemistry 308, p141-151.
[15]吳於貝,徐新興(1999),幾丁聚醣於薄膜製程發展及物性之研究,國立中央大學 化學工程研究所,碩士論文。
[16]施詔銘,涂耀國(2000),幾丁聚醣於防霉抗菌材料之應用,大葉大學 食品工程研究所,碩士論文。
[17]鄭至玉,李耀坤,2002,以生物技術生產甲殼寡糖之發展,生物技術 6,p18-24。
[18]林政雲,2002,以逆流層析分離幾丁寡醣可行性之探討,國立交通大學 應用化學所,碩士論文。
[19]F. A. G. Mattheus, 1997, Applications of chitin and chitosan, p10.
[20]A. J. Bard, L. R. Faulkner, Electrochemical methods fundamentals and applications, secomd edition, John Wiley & Sons, Inc..
[21]D. Qu, H. Shi, 1998, Studies of activated carbons used in double-layer capacitors, Journal of Sources 74, p99-107.
[22]鄭振宜,2001,以循環伏安及定電位法製備鎳系氧化物披覆電極之電化學行為,國立中正大學 化學工程研究所,碩士論文
[23]吳浩靑,李永舫,電化學動力學,2001,科技圖書股份有限公司,台北,台灣,p36。
[24]A. Nishino, Capaciators:operating principles, current market and technical trends, 1996, Journal of power Sources 60, p137-147.
[25]陳國城,微生物酵素工程學,藝軒圖書有限公司,台北,台灣,p11-19。
[26]A. S. Bassi, D. Tang, M. A. Bergougenou, 1999, Mediatored amperometric biosensor for glucose-6-phosphate monitoring based on entrapped glucose-6-phosohate dehydrogenase, Mg2+ ioms, tetracyanoquinodimethane, and nicotinamide adenine dinuceotide phosphate in carbon paste, Anal. Biochem. 268, p223-228.
[27]Instruction Manual for Zeta Potential Option, Brookhaven Instruments Corporation, New York, U.S.A., p16-17.
[28]C. L. Chuang, Y. J. Wang and H. L. Lan , 1997, Amperometric glucose sensors based on ferrocene-containing B-polyethlenimine and immobilized glucose oxidase, Analytica Chimica Acta 353, p37-44.

[29]H. Liu, H. Li, T. Ying, K. Sun, Y. Qin, D. Qi, 1998, Amperometric biosensor sensitive to glucose and lactose based on co-immobilization of ferrocene, glucose oxidase, β-galactosidase and mutarotase in β-cyclodextrin polymer, Analytica Chimica Acta 358, p137-144.
[30]林敬二,楊美惠,楊寶旺,廖德章和薛敬和,2000,化學大辭典,125。
[31]H. Liu, J. Deng, 1995, Amperometric glucose sensor using tetrathiafulva-lene in Nafion gel as electron shuttle, Analytical Chimica Acta 300, p65-70.
[32]H. Liu, T. Ying, K. Sun, H. Li, D. Qi , 1997, Reagentless amperometric biosen-sors highly sensitive to hydrogen peroxide, glucose and lactose based on Nafion film as an electron transfer mediator between horseradish peroxidase and an electrode, Analytica Chimica Acta 344, p187-199.
[33]J. Perdomo, C. Sundermeier, H. Hinkers, O. M. Morell, W. Seifert, M. Knoll, 1999, Containment sensors for the determination of L-lactate and glucose, Biosensors & Bioelectronics 14, p27-32.
[34]T. Matsumoto, A. Ohashi, N. Ito, H. Fujiwara, T. Matsumoto, 2001, A long-term lifetime amperometric glucose sensor with a perfluorocarbon polymer coating, Biosensors & Bioelectronics 16, p271-276.
[35]T. Matsumoto, M. Furusawa, H. Fujiwara, Y. Matsumoto, N. Ito, 1998, A micro-planar amperometric glucose sensor unsusceptible to interference species, Sensors and Actuators (B) 49, p68-72.
[36]J. J. Xu, H. Y. Chen, 2000, Amperometric glucose sensor based on glucose oxidase immobilized in electrochemically generated poly(ethacridine),Analytica Chemica Acta 423, p101-106.
[37]W. Schuhmann, 1991, Functionalized polypyrrole. A new material for the construction of biosensors, Synthetic Metals 41, p429-432.
[38]J. L. Chiang, J. C. Chou, Y. C. Chen, 2001, Study of the pH-ISFET and EnFET for biosensor applications, J. Med. Biol. Eng., Vol 21, No.3.
[39]H. Liu, X. Zhang, J. Wei, X. Wu, D. Qi, Y. Liu, M. Dai, T. Yu, J. Deng, 1996, An amperometric Meldola Blue-mediated sensor high sensitive to hydrogen peroxide based on immobilization of horseradish peroxidase in a composite membrane of regenerated silk fibroin and poly(vinyl alcohol), Analytica Chimica Acta 329, p97-103.
[40]T. Saito, M. Watanabe, 1998, Poly(vinylferrecene-co-2-hydroxyethyl methacrylate) for use as electron mediator in enzymatic glucose sensor, Reactive & Functional Polymers 37, p263-269.
[41]P. C. Pandey, R.W. Aston and H. H. Weetall, 1995, Tetracyanoquinodime-thane mediated glucose sensor based on a self assembling alkanethiol/phospho-lipid bilayer, Biosensors & Bioelectronics 10, p669-674.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top