(35.175.212.130) 您好!臺灣時間:2021/05/17 20:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:謝春義
研究生(外文):Chun-Yi Shiehy
論文名稱:奈米碳管官能基化與聚苯胺摻合膜之研究
論文名稱(外文):An Investigation Polyaniline Functionalization of Multi-Walled Carbon Nanotubes
指導教授:謝永堂謝永堂引用關係
指導教授(外文):Yeong-Tarng Shiehy
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業化學與災害防治研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:83
中文關鍵詞:聚苯胺奈米碳管
外文關鍵詞:polyanilinecarbon nanotubes
相關次數:
  • 被引用被引用:2
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
奈米碳管(CNT)間有微弱的凡德瓦力,所以易聚集在一起。本研究是將奈米碳管表面官能基化接枝聚苯胺,以利於分散開來,我們先利用SOCl2將奈米碳管醯化,再利用溶液聚合法與聚苯胺縮合接枝,由FTIR圖譜、拉曼圖譜、TGA圖、接枝樣品在NMP溶劑中的分散情形的觀察、COOH基滴定、導電度的量測、奈米碳管在摻合膜中分散性及SEM、TEM觀察,我們發現奈米碳管表面已成功接上聚苯胺。

研究中發現添加接枝聚苯胺之奈米碳管至純聚苯胺摻合膜中,當其添加接枝奈米碳管重量百分比達30%時,其導電度大於摻雜DBSA聚苯胺摻合膜,且無一般摻雜質子酸會造成薄膜龜裂之缺點,因此添加奈米碳管對聚苯胺導電度提升比使用DBSA摻雜還有效,且可補強薄膜之機械強度。

在SEM淬斷面結構觀察中,可發現奈米碳管表面接枝聚苯胺之摻合膜,在斷裂面之奈米碳管數量較少且不易裸露,其結構較緊密;反之添加未表面接枝奈米碳管之摻合膜,其結構較為鬆散且奈米碳管裸露程度比較大,而其裸露奈米碳管也較為完整,其原因應該是接枝奈米碳管之聚苯胺接枝段與聚苯胺相容,故分散性佳且易被包覆在聚苯胺成分裡,故在斷面所裸露奈米碳管較少,反之單純添加奈米碳管為物理性分散摻合在聚苯胺組成裡,故斷面較易裸露奈米碳管且較完整,其結構也較為鬆散。

在摻合膜電磁波干擾測試分析結果顯示,當添加PCNT-PA至PA組成裡對其屏蔽效果是有幫助,但欲達到商品化標準的40dB,因其導電度未達到100S/㎝左右,是EMI效果不佳的主因。
Multi-walled carbon nanotubes, produced by the arc discharge method, were functionalized by grafting with polyaniline to improve dispersion of the tubes in polymer matrix. The multi-walled carbon nanotubes were first purified to produce carboxylic acid group, followed by reactions with SOCl2 to from acid chlorides on the tubes which were then reacted with polyaniline via solution reactions of the acid chlorides on the tube and the amines on the polyaniline. The tubes have been successfully functionalized with polyaniline as demonstrated by FTIR, Ramam spectra, TGA data, amuch improved dissolution of the polyaniline-grafted nanotubes in NMP solvent, the titration of the content of the carboxylic groups, conductivity measurements, SEM, and TEM datd. The polyaniline-grafted nanotubes blending with polyaniline exhibited conductivities in the semiconductor region. The polyaniline-grafted nanotubes could not only improve the conductivity but also improve the mechanical property of the polyaniline matrix. Although the DBSA dopant could also give improved conductivities of polyaniline, the doping process could result in a brittle polyaniline. The anti-EMI properties of the polyaniline-grafted nanotubes/polyaniline blends were not as good as those of conductors.
目 錄 頁次
中文摘要 -------------------------------------------------------------------------- i
目錄 -------------------------------------------------------------------------- ii
表目錄 -------------------------------------------------------------------------- iii
圖目錄 -------------------------------------------------------------------------- iv
第一章緒論
1 前言----------------------------------------------------------------------------------- 1
第二章原理與文獻回顧------------------------------------------------------------- 4
2.1 導電性高分子-------------------------------------------------------------------- 4
2.1.1 起源------------------------------------------------------------------------------- 4
2.1.2. 導電性高分子的特性-------------------------------------------------------- 8
2.1.3 摻雜------------------------------------------------------------------------------- 8
2.1.4. 能帶理論------------------------------------------------------------------------ 9
2.1.5 導電高分子的應用------------------------------------------------------------ 13
2.2 聚苯胺------------------------------------------------------------------------------ 15
2.2.1 結構與聚合機構--------------------------------------------------------------- 16
2.2.2 應用------------------------------------------------------------------------------- 20
2.3奈米碳管的歷史及簡介--------------------------------------------------------- 22
2..3.1奈米碳管的性質與應--------------------------------------------------------- 23
2.3.2奈米碳管之合成方法---------------------------------------------------------- 27
2.4 奈米碳管之化學修飾方-------------------------------------------------------- 32
2.4.1 原理------------------------------------------------------------------------------- 32
2.4.2 製備------------------------------------------------------------------------------- 32
第三章 實驗部分------------------------------------------------------------------- 35
3.1藥品---------------------------------------------------------------------------------- 36
3.2 重要實驗設備--------------------------------------------------------------------- 37
3.3 實驗方式-------------------------------------------------------------------------- 38
3.3.1多層奈米碳管的製備-------------------------------------------------------- 38
3.3.2 奈米碳管表面官能基COOH基反滴定實----------------------------- 40
3.3.3奈米碳管接枝PA備--------------------------------------------------------- 40
3.3.4摻合體的製備------------------------------------------------------------------ 43
3.4試樣之分析----------------------------------------------------------------------- 44
第四章結果與討論----------------------------------------------------------------- 46
4.1奈米碳管製備------------------------------------------------------------------- 46
4.2奈米碳管接枝polyaniline樣品---------------------------------------------- 53
4.3不同前處理方式的奈米碳管接枝polyaniline樣品之分析----------- 59
4.4 PA/PCNT-PA摻合薄膜分析------------------------------------------------- 61
4.4.1 PA/PCNT-PA摻合薄膜TGA分析--------------------------------------- 61
4.4.2 PA/CNT-PA摻合薄膜導電度分析------------------------------------- 62
4.4.3 PA/PCNT-PA摻合薄膜導電度型態觀察------------------------------ 63
4.4.4 PA/PCNT-PA摻合薄膜SEM---------------------------------------------- 65
4.5 摻合膜電磁波干擾(Electromagnetic Interference,EMI)之測試分析
------------------------------------------------------------------------------------------ 76
第五章結論-------------------------------------------------------------------------- 77
參考文獻----------------------------------------------------------------------------- 78
自述------------------------------------------------------------------------------------ 83































表目錄
表2.1 「商品電磁相容式認可」規劃納入管制時程計畫--------------------- 14
表2.2 單層奈米碳管與其它材料之性質------------------------------------------ 25
表2.3 奈米碳管支應用------------------------------------------------------------ 26
表3.1 實驗的原料和配方------------------------------------------------------------- 41
表3.2 實驗所用符號代表------------------------------------------------------------- 42
表 4.1 不同的純化時間之奈米碳管、純化3小時奈米碳管再經酸處理及PCNT-PA之酸價值【COOH】----------------------------------------------52
表4.2 未掺雜DBSA之PA摻合膜導電度之導電度--------------------------- 63
表4.3 摻雜DBSA之PA之摻合膜的導電度------------------------------------- 63
表4.4 未摻雜DBSA之PA/CNT-PA摻合膜電磁波干擾(Electromagnetic Interference,EMI)之測試分析-------------------------------------------------76

























圖目錄
圖 2.1 (a)聚乙炔(b)聚對苯(c)聚咯(d)聚吩(e)聚硫化苯
(f)聚苯胺------------------------------------------------------------------------- 6
圖 2.2 金屬,半導體與絕緣體的導電度分佈------------------------------------ 7
圖 2.3 聚乙炔隨分子量增加時之分子軌域圖------------------------------------11
圖 2.4 偏極子與雙偏極子之能階圖-------------------------------------------------12
圖 2.5 苯胺與其衍生物(derivatives)的聚合機構----------------------------------18
圖 2.6 四種聚苯胺之理想型態------------------------------------------------------- 19
圖 2.7 Diagram of the electrochemical system for determining the glucose concentration by means of a porous polyaniline layer comtaining dispersed particles of the enzyme of the gluscose oxidase (GOD) coated on platinum..----------------------------------------------------------------------------21
圖 2.8 負極沉積碳之TEM圖 (Adapted from reference .)----------------------30
圖 2.9 Image from a CNT showing asymmetric fringe spacing on either sides
of the hollow. Regular spacing is 0.34 nm (right side), but higher
values (left side) can go up to greater than 0.4 nm. The illustration
shows one possible way (orientation of polygonized tubes) this
asymmetry can result, as discussed by M. Liu and
J.M.Cowly----------------------------------------------------------------------31
圖 2.10 三種水溶性碳六十衍生物-----------------------------------------------------33
圖 2.11 可溶於有機溶劑之單層奈米碳管製備法----------------------------------33
圖 2.12 水溶性碳管製備方式------------------------------------------------------------34
圖 3.1 弧光放電法儀器的外層構造--------------------------------------------------39
圖 4.1 弧光放電法所生成未純化奈米碳管之TEM圖--------------------------47
圖 4.2 弧光放電法所生成未純化奈米碳管之SEM圖---------------------------48
圖 4.3 純化奈米碳管之TEM圖-------------------------------------------------------49
圖 4.4 純化3小時與經酸處理奈米碳管之TGA圖------------------------------50
圖 4.5 純化奈米碳管經酸處理氧化之TEM圖-------------------------------------51
圖 4.6 (A)純PA(B)PCNT-PA的FTIR圖---------------------------------------55
圖 4.7 接枝與未接枝的奈米碳管在NMP溶劑中分散情形(a)側視圖(b)俯視圖------------------------------------------------------------------------------56
圖 4.8 純化PCNT、PCNT-PA與純PA的熱重量損失百分比關係圖-------57
圖 4.9 PCNT、PA、PCNT-PA拉曼圖譜--------------------------------------------58
圖4.10 經酸處理的奈米碳管、CNT-PA與純PA的熱重量損失百分比關係圖---------------------------------------------------------------------------------------60

圖 4.11 純PA薄膜與PA/PCNT-PA摻合薄膜TGA圖---------------------------61
圖 4.12 純聚苯胺膜之外觀圖-----------------------------------------------------------66
圖 4.13 未接枝奈米碳管與純聚苯胺摻合製膜之外觀圖(a)PA/PCNT 90/10(b)PA/PCNT 80/20(c)PA/PCNT 70/30(d)PA/PCNT 60/40(e)PA/PCNT 5050-------------------------------------------------------------------67
圖 4.14 奈米碳管接枝聚苯胺與純聚苯胺摻合製膜之外觀圖(a)PA/PCNT-PA 90/10(b)PA/PCNT-PA 80/20(c)PA/PCNT-PA 70/30(d)PA/PCNT-PA 60/40(e)PA/PCNT-PA 5050------------------------------------------------68

圖4.15 奈米碳管接枝聚苯胺與摻雜DBSA聚苯胺摻合製膜之外觀圖 (a) D-PA/ PCNT-PA 90/10 (b) D-PA/ PCNT-PA 80/20(c)D-PA/ PCNT-PA 70/30(d)D-PA/ PCNT-PA 60/40 (e)D-PA/ PCNT-PA 5050----------------------------------------------------------------------------------69
圖 4.16 (a)純聚苯胺(b)DBSA 摻雜純PA之SEM圖------------------------70
圖 4.17 (a)PA/PCNT 90/10(b) PA/PCNT-PA 90/10(c)D-PA/PCNT-PA 90/10之SEM圖--------------------------------------------------------------------------71
圖 4.18 (a)PA/PCNT 80/20(b) PA/PCNT-PA 80/20(c)D-PA/PCNT-PA 80/20之SEM圖--------------------------------------------------------------------------72
圖 4.19 (a)PA/PCNT 70/30(b) PA/PCNT-PA 70/30(c)D-PA/ PCNT-PA 70/30之SEM圖--------------------------------------------------------------------------73
圖 4.20 (a)PA/PCNT 60/40(b) PA/ PCNT-PA 60/40(c)D-PA/ PCNT-PA-60/40之SEM圖---------------------------------------------------------------------------74
圖 4.21 (a)PA/PCNT 50/50(b) PA/PCNT-PA 50/50(c)D-PA/PCNT-PA 50/50之SEM圖---------------------------------------------------------------------------75
參考文獻

1. H. Shirakawa, S. Ikeda, 1971, Polym. J. 2, 231.

2. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, 1997, A. J. J. Chem. Soc. Chem. Commun., 578

3. S. Maeda, D. B. Cairns, S. P. Armes, 1997, Polym. J. 3, 245.

4. E. Ruckenstein, Y. Sun, 1995, Synth, Met. 74, 107.

5. P. D. Beattie, F. P. Orfino, E. Simon, S. Holdcroft, 1999, Electrochem. 44, 2559.

6. 陳嘉崙, "導電性聚苯胺高分子材料製造氯離子感測器之研究" , 民國85年, 成功大學化工碩士論文

7. G. Harsányi, Polymer Films in Sensor Applications, (1995), Technomic Publishing Company, Chap 3, p209

8 柯賢達,〝Studies on the Synthesis of Poly(thiophene-3-acetic acid and Their blends〞, 民國82年, 台大化工碩士論文

9. A. J. Hegger, 1993, Synthetic Metal. 55-57, 3514

10. P. J. Nigrey, D. F. Macinnes, 1981, J. Electrochem. Soc. 128, 1651

11. W. N. Allen, P. Prant, C. A. Carosella, 1978, Syn. Met. 1, 151

12. T.C. Tlarke, M. T. Krounbi V. Y. Lee, 1981, J. Chem. Soc. 384

13. U. A. Sevil, O. Guven, O. Birer, S. Suzer, 2000, Synthetic Metals. 110, 175-179

14. A. G. MacDiarmid, 1994, Synthetic Metals 103-11665

15. H.H.S. Tavadi, K. R. Cromack, 1989, Physical Review, 39, 6, 3579

16. D. M. Mohilner, R. N. Adams, W. J. Argersinger, 1962, J. Am. Chem., Soc. 84, 3618

17. J. Bacon, R. N. Adams, 1968, J. Am. Chem., Soc. 90, 6596

18. R. A. Cox, E. Buncel, in The Chemistry of Hydrazo, Azo and Azoxy Groups, 1975, S. Patel Ed., Wiley, New York, Part 2, P775

19. E. M. Genies, M. Lapkowski, J. Electroanal. Chem., 1987, 236, 199

20. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N.L. D. Somasiri, W. Wu, S. I. Yaniger, 1985, Mol. Liqu. Cryst. 121, 173

21. T. Hjertberg, W. R. Salanek, I. Lundstrom, N. L. D. Somasiri, A. G.MacDiarmid, 1985, J. Polym. Sci., Polym. Lett. 23, 503

22. M. E. G. Lyons, Electroactive Polymer Electrochemistry, 1994, Chap 5, p241

23. M. E. G. Lyons, Electroactive Polymer Electrochemistry, 1994, Chap 5, p333

24. J. Przyluski, Focus Conducting Polymers Electrochemistry, 1991,Solid State Phenomena, Vol. 13&14, p975

25. S. Dogan, U. Akbulut, T. Yalcin, S. Suzer, L. Toparre, 1993, Synth. Met. 60, 27
26. Y. Ikariyama, W. Heineman, Anal. Chem. 1986, 58, 1803

27. P. Collins, P. Avouris, Scientific American, Dec. 2000, 38.

28. T. W. Ebbesen, Carbon Nanotubes: preparation and properties, 1997

29. H. Hiura, T. W. Ebbesen, K. Tanigaki, H. Tangaki, 1993, Chem. Phys. Lett. 202, 509.

30. A. G. MavDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasir, 1985, Mol. Cryst. liq. Cryst. 121, 173.

31. J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, 1998, Nature. 391, 59.

32. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. Scuseria, J. E. Fischer, R. E. Smalley, 1996, Science. 273, 483.

33. S. Frank, P. Poncharal, Z. L. Wang, W. A. De Heer, 1998, Science. 280, 1744.

34. 奈米材料的發展動態, 1998, 化工資訊, 2, 20

35. (a)Bethune , D. S, et al. 1993, Nature. 363, 605 (b)Ajayan , P . M , et al . 1993, Chem. Phys. Lett. 215, 509

36. 高英哲, 〝電弧電漿法製備碳微管暨水溶性碳微管之製備及應用〞,民國90年6月, 國立清華大學化學碩士論文

37. D. M. Guldi, M. Prato, 2000, Acc. Chem. 33, 695.

38. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon, 1998, Science, 282, 95.

39. J. Laska, A. Pron, R. Girault, S. Quillard, G. Louarn, S. Lefrant, 1995, Synthetic Metals. 75, 69-74

40. Sacak, Mehmet; Akbulut, Ural; Batchelder, N. David, 1999, Polymer. 40, 1, 21-26

41. T. W. Ebbesen, P. M. Ajayan, 1993, Nature. 363, 603

42. E. Martuscelli, C. Silvestre, 1986, Makromol. Chem. 187, 1557-1571.

43. X. Li, S. L. Hsu, 1984, Journal of Polymer Science:Polymer Physics Edition, 22, 1331-1342.

44. 林景正、賴宏仁, 奈米材料技術與發展趨勢, 1999, 工業材料, 153, 95。

45. 林建中, 高分子材料性質與應用, 87年10月20日。

46. 孫逸民、陳玉舜、趙敏勳、謝明學、劉興鑑, 儀器分析, 86年7月15日。

47. 葉明國, 聚合物化學, 76年2月。

48. 薛敬和, 高分子化學, 81年2月1日。

49. 林建中, 高分子化學原理, 78年11月。

50. 賴義成, 合成化學, 83年9月

51. Philp Kim, Teri W. Odom, STM study of single-walled carbon nanotubes, 2000, Carbon. 38, 1741-1744

52. J. Sandler, Development of dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties, 1999, Polymer. 40, 5967-5971

53. Y. Ando, X. Zhao, Structure analysis of purified multiwalled carbon nanotubes, 2001, Carbon. 569-574

54. Zhaoxia Jin, Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate)composites, 2001, Chemical Physics. 337, 43-47

55. Y. Roichman, polyaniline synthesis:influence of powder morphology on

conductivity of solution cast blends with polystyrene, 1999, Synthetic metals. 98, 201-209

56. Huang Zeng, Synthesis of various forms of carbon nanotubes by AC ARC discharge, 1998, Carbon. 36, 259-261

57. Z.K. Tang, Electrical transport properties of mono-dispersed single-wall carbon nanotubes formed in channels zeolite crystal, 2000, Physica B. 279, 200-203

58. I. Musa, properties of Regioregular poly(3-octylthiophene)/multi-wall carbon nanotube composites, 1999, Synthetic Metals. 102, 1250

59. Yongjun Chen, Chemical modification of polyaniline powder by surface graft copolymerization, 2000, polymer, 41, 3279-3287

60. 陳泓宇,”導電性聚苯胺/磺酸化聚胺酯混合材料之研究”,91年6月,國立台灣大學化學工程研究所碩士學位論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top