(3.238.240.197) 您好!臺灣時間:2021/04/13 01:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳珮瑱
研究生(外文):Pei-Chen Wu
論文名稱:中、高濃度酚在中空纖維薄膜生物反應器中之降解效率
論文名稱(外文):Efficiency of Degradation of Medium-to-High-Strength Phenol in Hollow Fiber Membrane Bioreactors
指導教授:莊瑞鑫莊瑞鑫引用關係
指導教授(外文):Ruey-Shin Juang
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:81
中文關鍵詞:生物降解中空纖維薄膜
外文關鍵詞:BiodegradationPhenolHollow Fiber Membrane
相關次數:
  • 被引用被引用:5
  • 點閱點閱:258
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
工業廢水中含有許多酚化合物,如不加以處理而直接排放,會對整個生態環境造成嚴重的污染,所以本研究以中空纖維膜生物反應器中以Pseudomonas putida降解中、高濃度之酚溶液。此系統之優勢在於:對於毒化性、抑制性物質的忍受能力也較傳統式或懸浮式生物處理法高,以期許能夠將酚處理到合乎於排放標準。
建立P. putida於中空纖維膜生物反應器之降解實驗,探討不同組成分、pH值、分散劑、初始細胞濃度、不同預培養方式與流速等對降解速率之影響,找出其實驗最適化的操作條件。由實驗發現,將實驗操作在兩反應器都添加培養機質及分散劑且將管側及殼側流速分別控制在2.4 mL/min,2 mL/min、pH 7.1、OD = 0.06左右和在預培養以100 mg/L下活化其效果最佳。然後將上述之條件運用在不同基質降解實驗下,發現廢水中可降解酚濃度範圍(100 ~ 2800 mg/L)與降解時間(11 ~ 98 h)。分散劑在本實驗扮演著兩種角色,其一為改善細胞阻塞情況,其二為可減低毒化之現象。
Phenolic compounds were often encountered in industrial effluents. It is a serious pollution problem while discharging such wastewater without treatment. The degradation of medium-to-high-strength phenol by pseudomonas putida in hollow fiber membrane bioreactor was thus investigated. The ability of this system to tolerate the toxic and restrained material is better than that of the traditional and freely suspended treatments. Hopefully, this system could meet the standard of effluent discharge.
In hollow fiber membrane bioreactors, the degradation rates of phenol were determined as a function of wastewater composition, pH value, with and without dispersion agent, initial cell concentration, with and without pre-culture, and flow rate. The experimental results showed that the degradation performance was the best when the mineral medium and dispersion agent were added in two phases at pH 7.1 and a flow rate of 2.4 (tube side) and 2.0 mL/min (shell side). The performance was enhanced when the cell is pre-cultured in a medium containing 100 mg/L of phenol. Under the above-mentioned conditions the experiment showed that the degradation time was 11 — 98 h in substrate concentration of in the range of 100 — 2800 mg/L. However, the dispersion agent could improve the situation of the cells retards and lower the toxicity.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
符號說明 x
第一章緒論 1
1.1 前言 1
1.2 酚之特性 4
1.3 生物分解性 5
1.4 酚生化代謝途徑之研究 6
1.5 影響細胞或酵素催化反應之因素 9
1.5.1 環境中溫度之影響 9
1.5.2 環境中酸鹼值之影響 11
1.6 文獻回顧 12
1.7生化反應器 13
1.8中空纖維生物反應器 13
1.8.1中空纖維生物反應器之簡介 13
1.8.2中空纖維生物反應器之構造 15
1.8.3中空纖維生物反應器之操作模式 17
1.8.4中空纖維細胞培養 18
1.8.5其他型式之中空纖維反應器 19
1.8.6中空纖維反應器的優缺點 23
1.8.7中空纖維反應器之殺菌 24
1.8.8中空纖維反應器之應用 25
1.9 研究動機與目的 28
第二章 實驗部分 29
2.1 實驗藥品與儀器 29
2.1.1 實驗藥品 29
2.1.2 實驗儀器 30
2.2 菌種來源與培養 32
2.2.1 菌種來源 32
2.2.2 菌種培養基 32
2.2.3 菌種的預培養 33
2.3中空纖維膜的配置 34
2.4 菌體細胞數及菌體量之測定 35
2.4.1 細胞光學密度測定 35
2.5 酚濃度測定 36
2.6 中空纖維膜之清洗與保養 37
2.7 酚吸附於薄膜實驗 37
2.8 細胞於中空纖維反應器之降解實驗 38
2.8.1 不同組成份下之降解實驗 38
2.8.2 不同pH下之降解實驗 39
2.8.3 不同分散劑之降解實驗 40
2.8.4 不同流速之降解實驗 40
2.8.5不同初始細胞濃度之降解實驗 41
2.8.6不同之預培養方式在中空纖維上之降解實驗 42
2.8.7不同基質(酚)濃度之降解實驗 43
第三章 結果與討論 45
3.1 基質降解動力學 45
3.2不同組成對降解之影響 45
3.3酚吸附在薄膜上之影響 48
3.4不同pH對降解之影響 50
3.5不同比例之分散劑(TSA)對降解之影響 52
3.6不同流速對降解之影響 54
3.7不同初始細胞濃度對降解之影響 56
3.8不同之預培養方式在中空纖維膜上對降解之影響 58
3.9 不同基質(酚)對降解之影響 60
第四章 結論 63
參考文獻 65
自述 71
Aksu, Z.; Bülbül, G. “Determination of the effective diffusion coefficient of phenol in Ca-alginate-immobilized p. putida beads,” Enzyme Microbial. Technol., 25, 344-348 (1999).
Altshuler, G. L.; Dziewulski, D. M.; Sowek, J. A.; Belfort, G. “Continuous hybridoma growth and monoclonal antibody production in hollow fiber reactors-separators,” Biotechnol. Bioeng., 28, 646-658 (1986).
Alvaro, A. M. G.; Rui, A. R.; Alirio, E. “Phenol biodegradation by Pseudomonas putida DSM 548 in a batch reactor,” Biochem. Eng. J., 6 , 45-49 (2000).
Aziz, C. E.; Fitch, M. W.; Linquist, L. K.; Pressman, J. G.; Georgiou, G.; Speitel, G. E. “Methanotrophic biodegradation of trichloethylene in a hollow fiber membrane bioreactor,” Environ. Sci. Technol., 29, 2547-2583 (1995).
Callies, R.; Jackson, M. E.; Brindle, K. M. “Measurements of the growth and magneticre-sonance imaging,” J. Biotechnol., 12, 75-78 (1994).
Cappuccino, J. G.; Sherman, N. “Microbiology: A Laboratory Manual,” 3rd edition, Benjamin/Cummings Publishing Company, Inc. Redwood City, California, 1992, 97-110
Chapelle, F. H. “Ground-water Microbiology and Geochemistry,” John Wiley & Sons, Inc, New York, 1992, pp. 47-58.
Davis, R. J.; Gainer, J. L.; O’Neal, G.; Wu, I. W. “Photocatalytic decolorization of wastewater dyes,” Wat. Environ. Res., 66, 50-53 (1994).
Dursun, A. Y.; Aksu, Z. “Effect of internal diffusivity of ferrous(Ⅱ) cyanide complex ions in Ca-alginate immobilized p. fluorescens gel beds on the biodegradation rate,” Process Biochem., 37, 747-752 (2001).
Fabiani, C.; Giubileo, G.; Pizzichini, M.; Violante, V. “Steady state modeling of a hollow fiber enzymatic reactor,” Biotechnol. Bioeng., 30, 458-461 (1987).
Flendrig, L. M.; Velde, A. A.; Chamuleau, R. A. “Semipermeable hollow fiber membranes in hepatocyte bioreactors: a prerquisite for a successful bioartifical liver?,” Artif. Organs, 21, 1177-1181 (1997b).
Gonzalez, G.; Herrera, G.; Garcia, Ma. T.; Pena, M. “Biodegradation of phenolic industrial wastewater in a fluidized bed bioreactor with immobilized cells of p. putida,” Biores. Technol., 80, 137-142 (2001).
Gregory, J. “Hight-Technology application of organic colorants,” plenum press. 150-180 (1991).
Holden, P. A.; Halverson, L. J.; Firestone, M. K. “Water stress effects on toluene biodegradation by p. putida,” Biodegraditon, 8, 143-151, (1997).
Jia, J.; Yang, J.; Lisa, J.; Wang, W.; Wang, Z. “Treatment of dyeing wastewater with ACF electrodes,” Wat. Res., 22, 881-884 (1999).
John, G. S.; Crawford R. L. “Microbial degradation of chlorinated phenol,” Trends Biotechnol ., 3, 300-305 (1985).
Knackmuss, H. J.; Dorn, E. “Chemical structure and biodegradability of halogenated aromatic compounds : Substituent effect on 1,2-dioxygenation of catechnol,” Biochem. J. Cell. Asp., 174, 85-94 (1978)
Knazek, R. A.; Gullino, P. M.; Kohler, P. O.; Dedrick, R. L. “Cell culture on artificaial capillaries : An approach to tissue grouth in vitro,” Science., 178, 65 (1972).
Knight, P. “Hollow fiber bioreactors for mammalian cell culture,” J. Biotechnol., 7, 459-461 (1989).
Ku, K.; Kuo, M. J.; Delente, J.; Wildi, B. S.; Feder, J. “Development of a hollow fibersystem for large-scale culture of mammalian cells,” Biotechnol. Bioeng., 23, 79-95 (1981).
Lante, A.; Crapisi, A.; Krastanov, A.; Spettoli, P. “Biodegradation of phenols by laccase immobilized in a membrane reactor,” Proc. Biochem., 36, 51-58 (2000).
Loh, K. L.; Chung, T. S.; Ang, W. F. “Immobilizoed-cell menbrane bioreactor for high-strength phenol wastewater,” J. Environ. Eng. ASCE, 126, 75-79 (2000).
Mordocco, A.; Kuek, C.; Jenkins, R. “Continuous degradation of phenol at low concentration using immobilized Pseudomonas putida,” Enzyme Microbial. Technol., 25, 530-536 (1999).
Morita, m.; Ito, R.; Kamidate, T.; Watanabe, H. “Kinetics of peroxidase catalyzed decolorization of orange Ⅱ with hydrogen peroxide,” Textile Res. J., 470, 66-73 (1996).
Morrison, J. M.; Suidan, M. T.; Venosa, A. D. “Use of menbrane biodegradation of MTBE in contaminated water,” J. Environ. Eng. ASCE, 128, 836-841 (2002).
Pagga, U.; Taeger, K. “Development of a mothod for adsorption of dyestuffs on actived sludge,” Wat. Res., 1051, 28-33 (1994).
Park, J. H.; Zhao, X.; Voice, T. C. “Comparison of biodegradation kinetic parameters for Naphthalene in batch and sand column system by p. putida,” Environ. Prog., 20, 93-102 (2001).
Piret, J. M.; Cooney, C. L. “Model of oxygen transport limitations in hollow fiber bioreactors,” Biotechnol. Bioeng., 37, 80-92 (1991).
Reardon, K. F.; Mosteller, D. C.; Rogers, J. B. “Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for p. putida F1,” Biotechnol. Bioeng., 69, 385-400 (2000).
Robertson, C. R.; Kim, I. H. “Dual aerobic hollow fiber bioreactor for cultivation of streptomyces aureofaciens,” Biotechnol. Bioeng., 27, 1012-1020 (1985).
Sheng, H.; Peng, C. F. “Treatment of textile wastewater by lectrochemical mothod,” Wat. Res., 28, 277-282 (1994).
Shim, H., Yang, S. T. “Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by a coculture of p. putida and p. flurescens immobilized in a fiber-bed bioreactor,” J. Biotechnol., 67, 99-112 (1999).
Slokar, Y. M.; Marechal, A.; Majcen, L. “Mothods of decolorization of texile wastewater,” Dyes Pigments., 37, 335-356 (1998).
Strickland, A. F.; Perkins, W. S. “Decolorization of continuous dyeing wastewater by ozanation,” Textile Chemist and Colorist, 11, 27-32 (1995).
Takazawa, Y.; Tokashiki, M.; Murakami, H.; Yamada, K.; Omura, H. “High-density culture of mouse-human hybridoma in serum-free defined medium,” Biotechnol. Bioeng., 27, 1012-1020 (1988).
Tharakan, J. P.; Chau, P. “A radial flow hollow fiber bioreactor for the large-scale culture of mammalian cells,” Biotechnol. Bioeng., 28, 329-342 (1986).
Wang, C. C.; Lee, C. M.; Lu, C. J.; Chuang, M. S.; Huang, C. Z. “Biodegradation of 2,4,6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria,” Chemosphere, 41, 1873-1879 (2000).
Wisniewski, C.; Cruz, A. L.; Grasmick, A. “Kinetics of organic carbon removal by a mixed culture in a membrane bioreactor,” Biochem. Eng. J., 3, 61-69 (1999).
White, D. “The physiology and biochemisty of projaryotes,” Oxford University Press, Inc., New York, 1995.
Xiao, Z.; Dahlan, M. H.; Xing, X. H.; Yoshikawa, Y.; Mastumoto, K. “A membrane bioreactor with novel modules for effective biodegradation of toluene,” Biochem. Eng. J., 5, 83-88 (2000).
Zhou, E.; Crawford, R. L. “Effect of oxygen, nitrogen, and temperature on gasoline biodegradation in soil,” Biodegradation, 6, 127-140 (1995).
Zhu, C.; Chung, T. S.; Loh, K. C. “Activated carbon-filled cellulose acetate hollow fiber membrane for cell immobilization and phenol degradation,” J. Appl. Polym. Sci., 76, 695-707 (2000).
孔繁翔,尹大強,嚴國安,「環境生物學」,高等教育出版社,中國大陸(2000)。
李宗憲,「缺氧/好氧生物濾床法去除污水中氮磷之研究」,淡江大學碩士論文,台灣(1998)。
李昭仁,「化學工程與人工臟器之發展」,化工技術,第2卷第10期,第80至83頁(1994)。
李紅岩,高孟春,楊敏,潘峰,王寶泉,王丹,「組合式膜生物反應器處理高濃度氨氮廢水」,環境科學(大陸期刊),第23卷第5期,第62至66頁(2002)。
阮國棟, 「廢水中各種酚類去除之理論與實務」,工業污染防治,第 3 卷第 3 期,第88至103頁(1984)。
林永盛,「生長與染料褪色過程代謝產物促進染料生物褪色之探討」,逢甲大學碩士論文,臺灣 (2002)。
徐玉泉、張維、陳明、林敏、李浚明、方宣鈞,「一株苯酚降解的分離和鑑定」,環境科學學報(大陸期刊),第 20 卷第 4 期,第450至455頁(2000)。
陳俊男,「中空纖微生物反應器的發展及應用」,化工資訊, 20-25頁(2000)。
曾秀雅,「懸浮態與固定化細胞降解酚之速率與質傳效應」,元智大學碩士論文,台灣 (2002)。
葉茂淞,「以天然與基因重組菌種進行偶氮染料褪色動力學之研究」,逢甲大學碩士論文,臺灣 (2002)。
劉永銓,易逸波,「中空纖微生物反應器簡介」,化工技術,第12卷第164期,第208-215頁(1998)。
蔡英材, 「酚類化合物氧化過程與中間產物之辨認」,台灣大學碩士論文,台灣(1989)。
蘇遠志,黃世佑,「微生物化學工程」,華香園出版社,第372-440頁(1994)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔