(34.204.201.220) 您好!臺灣時間:2021/04/20 13:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:沈坤昇
研究生(外文):Kun-Sheng Shen
論文名稱:PTFE-Nafion複合膜的製作及性能研究
論文名稱(外文):Manufacture and Performance of Nafion-PTFE Composite Membranes
指導教授:林秀麗林秀麗引用關係
指導教授(外文):Hsiu-Li Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:107
中文關鍵詞:聚四氟乙烯全氟磺酸樹脂燃料電池質子交換膜
外文關鍵詞:PTFENafionproton exchange membranesfuel cell
相關次數:
  • 被引用被引用:14
  • 點閱點閱:708
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:106
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是研發PTFE-Nafion複合膜應用於氫氧燃料電池上,並希望能取代價格昂貴的商業膜材。本研究利用SEM、EDX、TGA、氣體滲透儀、交流阻抗儀等,來研究PTFE膜浸漬於不同Trtion濃度的Nafion溶液所製作成PTFE-Nafion複合膜的表面結構、膜材成分、耐溫性及導電度。並利用動態光散射儀來觀察不同Triton濃度對Nafion在甲醇/水(4/1 wt ratio)溶液中粒徑的分布的影響。各項實驗數據顯示當Nafion溶液中
[Trtion]≧1wt%,Nafion分子可進入PTFE膜孔洞內部,複合膜導電度
σ=1.1~1.7×10-3(S/cm),而[Trtion]<1wt%時,其σ=6.6~9.7×10-4(S/cm) 。另外動態光散射實驗數據顯示出在溶液中加入Triton會降低Nafion分子聚集,使Nafion分子在溶液中有較好的分散性,能讓Nafion分子解離成較小的粒子,容易進入PTFE孔洞膜內。在單電池效能的測試數據顯示出,複合膜的單電池功率最大的功率密度約0.6(W/cm2)與Nafion膜製成的單電池功率密度不相上下,但成本為Nafion膜1/3價錢。
The manufacture process and performance of Nafion-PTFE composite membrane for H2/O2 fuel cell applications were studied in this thesis. Porous PTFE membrane was impregnated in Nafion solutions containing various concentration of Triton to fabricate composite membrane. SEM was used to observe the morphology of composite membranes; EDX to study the penetration of Nafion molecules in PTFE membranes; TGA to study the thermal stability; AC impedance to study the conductivity; and a home made equipment to study the gas permeability of the composite membrane. All the experimental results revealed that while the Triton concentration in Nafion solutions is lower than 1wt%, the Nafion molecules were not able to penetrate inside the pores of PTFE membranes and the conductivity of composite membranes is low. While the Triton content in the Nafion solution is higher than 1wt%, the Nafion molecules can easily penetrate into the pores of PTFE membranes, the conductivity of composite membranes is high. Dynamic laser light scattering (DLS) was used to study the particles size distribution of Nafion molecules in solution. It was found that the present of Triton in Nafion solutions results in a better dispersion of Nafion molecules in solutions, and avoid aggregation of Nafion molecules. Thus Nafion molecules were able to penetrate inside the pores of PTFE membranes lead to a better performance of composite membranes.
中文摘要………………………………………………………………….Ⅰ
英文摘要………………………………………………………………….Ⅱ
致謝……………………………………………………………………….Ⅲ
目錄…………………………………………………………...............Ⅳ
圖目錄………………………………………………………………….....Ⅵ
表目錄………………………………………………………………….....Ⅸ
一、緒論…………………………………………………………………...1
1.1 前言………………………………………………………..........1
1.1.1 質子交換膜簡介與應用………………………………..1
1.1.2 聚四氟乙烯(PTFE)簡介………………………………..2
1.1.3 Nafion(全氟磺酸樹酯)簡介……………………………3
1.2 研究目的……………………………………………………...4
1.3 文獻回顧……………………………………………………...5
二、實驗方法……………………………………………………………...8
2.1 實驗藥品………………………………………………………..8
2.2 儀器設備………………………………………………………..9
2.3 實驗步驟……………………………………………….……...11
2.3.1 PTFE膜厚的測定………………….…………….……...11
2.3.2PTFE機械強度測試………………………………....…..11
2.3.3 PTFE/Nafion複合膜製備……………………………....11
2.3.4 SEM觀察PTFE及PTFE/Nafion複合膜表面態...........12
2.3.5 PTFE/Nafion複合膜EDX元素分析…………..…..…...12
2.3.6膜材吸水膨潤比(swelling ratio)….………………...13
2.3.7 PTFE/Nafion複合膜TGA測定…….…….……..……...14
2.3.8 PTFE/Nafion複合膜DSC測定………….……...……...14
2.3.9導電度的量測………………………………………......14
2.3.10透氣性的量測…..………………………………….....16
2.3.11單電池性能測試…………………………………….…..18
2.3.12 動態光散射實驗…………………………………….….19
2.4 實驗相關原理分析……………………………….…….….….26
2.4.1熱重分析儀的原理…………………………………….….26
2.4.2交流阻抗法(AC impedance)………………………......26
三、結果與討論…………………………………………………...…....35
3.1基材的選定……………………………………………….……...35
3.2掃描式電子顯微鏡(SEM)觀察……………………………….....36
3.3能量分散性X射線顯微分析(EDX)元素分析……………........66
3.4膜材的吸水膨潤…………………………………………….…...68
3.5微差掃描熱分析(DSC)………………………………………..….69
3.6熱重分析(TGA)………………………………………….…..…..72
3.7導電度的量測……………………………………………….…...76
3.8氣體滲透量測…………………………………………………....86
3.9單電池效能測試………………………………………………....88
3.10不同Triton添加量的Nafion/甲醇/水(4/1)溶液的
3.11動態光散射………………………………………………..…….91
四、結論…………………………………………………………….......101
五、參考文獻.…………………………………………………………....103
1.Alan J., “Process of making a composite membrane“, US Patent
6495209 B1, Dec. 17, 2002.
2.Bamdad B., Alex R. H., Jeffrey A. K., “Ultra-thin integral composite membrane”, US Patent 5547551, Aug. 20, 1996.
3.Bamdad B., Alex R. H., Robert S. M., “Electrode apparatus
containing an integral composite membrane”, US Patent
RE37656 E, Apr. 16, 2002.
4.Bruce G., Rebecca U., “Expanded PTFE multilayer composite sheet”, US Patent 6500523 B1, Dec. 31, 2002.
5.Camaion N., Casalbore-Miceli G., Journal of Applied
electrochemistry, 27, 862-866(1997)
6.Dimitrova P., Friedrich K.A., Stimming U., “Modified Nafion
R-based membranes for use in direct methanol fuel cells”, Solid State Ionics, 150, 115-122. (2002)
7.Dimitrova P., Friedrich K.A., Vogt B., Stimming U., “Transport properties of ionomer composite membranes for direct methanol fuel cells“, Journal of Electroanalytical Chemistry, 532, 75-83 (2002).
8.Ennari, J., Elomaa M., Sundholm F., “Modeling a polyelectrolyte system in water to estimate the ion-conductivity“, Polymer, 40, 5035-4051 (1999)
9.Greg R., Jeffery A. K., “Integral multi-layered ion-exchange
composite membranes”, US Patent 6130157, Oct. 10, 2000.
10.Greso A.J., Moore R.B., Cable K.M., Jarrett W. L., and Mauritz K.A, “Chemical modification of a Nafion sulfonyl fluoride precursor via in situ sol-gel reaction”, Polymer, 38, 1345-1356 (1997)
11.Hrioshi K., “Ion exchange and electrode assembly for an
electrochemical”, US Patent 6054230, Apr. 25, 2000.
12.Jan D., John M. G., Grahan A. H., “Composite membranes”, US Patent 6042958, Mar. 28, 2000.
13.Soongpy S., Heung Y. H., Seong-Ahn H., “Charateristics of the Nafion Ionomer-impregnated composite membrane for polymer electrolyte fuel cells”, Journal of power source, 109, 412-417 (2002)
14.Jung D.H., Cho S.Y., Peack D.H., Shin D. R., Kim J.S.,
“Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell”, 106, 173-177(2002)
15.Kawahara, M., Junji Morita, Masahiro Rikukawa, Kohei Sanui,
Naoya Ogata, “Synthesis and proton conductivity of thermally stable polymer electrolyte: poly (benzimidazole) complexes with strong acid molecules”, Electrochimica Acta, 45, 1395-1398 (2000)
16.KEN-ichi K., Taketo K., ”Structure generation in PTFE porous membranes induced by the uniaxial and biaxial stretching oprations”, Journal of Membrane Science, 149, 51-57 (1998)
17.Kerres Jochen A., “Development of ionomer membranes for fuel cells”, Journal of Membrane Science, 185, 3-27 (2001)
18.Kreuer K. D., “On the development of proton conducting polymermembranes for hydrogen and methanol fuel cells”, Journal of Membrane Science, 185, 29-39 (2001).
19.Kumar, B. and R. A. Marsh, ”Ionic conductivity of polymer
electrolytes”, Solid State Ionics, 51, 411-416 (1992)
20. Lehtinen, T., Sundholm G., Holmberg S., Sundholm F.,
“Electrochemical characterization of PVDF-based proton conducting membranes for fuel cells”, Electrochimica Acta, 43,1881-1890(1998)
21.Lehmani, A., Turq P., Perie M., Perie J., J. Simonin P., “Ion transport in Nafion 117 membrane”, J. Electroanal. Chem., 428, 81-89 (1997)
22. Liu, C., Gibbons A. R., Arnell R. D., Tong J., and Ren L., “Reactive deposition of aluminum oxide coatings on PTFE substrate,” Surf. Coat. Technol., 139, 111-117 (2001)
23.Liu F., Yi B., Xing D., Yu J., and Zhang H., ”Nafion/PTFE
composite membranes for fuel cell applications”, Journal of Membrane Science, 212, 213-223(2003).
24.Macdonald J. R., “Impedance spectrosocopy emphasizing solid materials and systems”, New York, 1987.
25.Mehta V., Cooper J.S., “Review and analysis of PEM fuel cell design and manufacturing”, Journal of power source 114, 32-53(2003).
26.Naofumi M., “Solid electrolyte composite for electrochemical reaction apparatus”, US Patent 6241235 B1, Jun. 5, 2001
27.Nouel K. M., Fedkiw P.S., “Nafion-based composite polymer
electrolyte membranes”, Electrochimica Acta, 43, 2381-2387(1998)
28.Poltrazewski Z., Wieczorek W., Przyluski V., ”Novel proton
conducting composites for application in methanol fuel cells”, Solid Stat Ionics, 119, 301-304 (1999).
30. Rikukawa, M., K. Sanui, “Proton-conducting polymer electrolyte membranes base on hydrocarbon Polymers”, Prog. Polym. Sci., 25, 1463-1502 (2000)
31.Robert W. Gore, Newark, Del., “Process for producting porous products”, US Patent 3953566, April 27, 1976.
32.Shim J., Ha H.Y., Hong S.A., Oh I.H., “Characteristics of Nafion ionomer-impregnated composite membrane for polymer electrolyte fuel cells”, Journal of Polymer source, 109, 412-417(2002).
33.Shoibal B., Nework D., “Fuel cell incorporating a reinforced
membrane”, US Patent 5795668, Aug. 18, 1998.
34.Toshiaki I., Norikane N., Takuya M., “Process of making a porous PTFE membrane”, US Patent 5910277, Jun. 8, 1999.
35. William G., “Highly fluorinated ion exchange/nonfunctional polymer blends”, US Patent 6252000 B1, Jan. 26, 2001.
36.Zyun S., Tsutomu I., Naoko F., “ Proton conductivity along interface in thin cast film of Nafion”, Electrochemisty Communications,4, (2002)143-145
37.田褔助, “電化學理論與應用”, 高立出版社, 台北, (1993)
38.高振育, “PTFE表面改質之研究與應用,” 博士論文, 中原大學,
(1999)
39.張漢宜, “有機/無機混成質子交換膜之製備及其應用於燃料電池
之特性分析”, 碩士論文, 雲林科技大學,(2001)
40.李淑珍, “Nafion/醇/水溶液之光散射與黏彈性研究”, 碩士論文,
元智大學, (2001)
41.李維倫, “含浸磺酸化聚苯乙烯之聚四氟乙烯膜於燃料電池質子
交換膜之應用”, 碩士論文, 元智大學, (2001)
42.田昭武, “電化學研究方法”, 科學出版社, 北京, (1984)
43.陳明志, “膠態高分子電解質導電度及循環伏安行為研究,” 碩士
論文,中央大學,(1996)
44. 陳志瑋, “電漿誘導接枝對ePTFE結構及性質變化之研究”, 碩士
論文, 中原大學,(2000)
45.蔡宏斌, “氟碳聚合體(1):PTFE”, 科儀新知, 第十四卷第一
期,85-95(1992.8)
46.林宗儀, “矽氧烷型高分子電解質之製備與物性探討”, 碩士論
文, 成功大學, (2000)
47. 許照, “基本電學”, 徐氏基金會,台北, (1988)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔