(3.230.76.48) 您好!臺灣時間:2021/04/13 15:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊書揚
研究生(外文):Shu-Yang Yang
論文名稱:模擬退火法在液晶光電相關器最佳化之應用
論文名稱(外文):The application of the simulated annealing to the optical correlation filter using liquid crystal device
指導教授:陳祖龍
指導教授(外文):Chulung Chen
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:56
中文關鍵詞:聯合轉換相關器模擬退火法
外文關鍵詞:Joint Transform CorrelatorSimulated Annealing
相關次數:
  • 被引用被引用:5
  • 點閱點閱:160
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以聯合轉換相關器的架構為基礎,配合模擬退火法的基本概念來設計出最佳化的參考影像,以辨識不同形變的目標,並闡述其數學模型和具體方法。配合模擬退火法的約束條件,進行濾波器最佳化設計,我們嘗試由電腦產生7個不同level數的參考函數,在固定的訓練影像與旋轉角度下,透過聯合轉換相關器快速的圖形識別能力再配合模擬退火法的約束條件可以得到最佳化的參考影像,結果證明該方法在濾波器最佳化設計與影像辨識效果很理想。
In this thesis, we designed an optimal reference image based on the JTC along with simulated annealing algorithm to recognize the target that has different distortions. We also elaborate on the mathematical model and specific methods.
Based on the basic simulated annealing concept and JTC system, we used seven randomized and reference functions with different levels to get the optimal reference image from the training images that have different degrees of rotation. Numerical results have showed that the optimal filter design performs well in image recognition.
書名頁 …………………………………………………… i
授權書 …………………………………………………… ii
論文口試委員審定書 …………………………………… iii
中文提要 ………………………………………………… iv
英文提要 ………………………………………………… v
誌謝 ……………………………………………………… vi
目錄 ……………………………………………………… vii
圖目錄 …………………………………………………… viii
第一章 緒論 …………………………………………… 1
第二章 原理 …………………………………………… 5
2-1 聯合轉換相關器 ………………………………… 5
2-2 模擬退火法 ……………………………………… 9
2-3 濾波器的評估 …………………………………… 11
第三章 實驗結果與討論 …………………………… 14
3-1 實驗目的及架構 ………………………………… 14
3-2 實驗結果及比較 ………………………………… 21
3-2-1 相關能量與尖峰強度比(CPE)的比較 ………… 30
3-2-2 尖峰旁瓣比(PSR)的比較 ……………………… 35
3-2-3相關尖峰強度均勻度的比較 …………………… 41
3-2-4 目標影像在雜訊影響下之辨識能力的比較 ……46
第四章 結論 ………………………………………… 51
4-1 結論 ……………………………………………… 51
4-2 未來研究方向 …………………………………… 52
參考文獻 ……………………………………………… 53
[1] A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory., IT-10, pp. 139-145. 1964.
[2] C. S. Weaver and J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt., 5, pp. 1248-1249. 1966.
[3] F. T. S. Yu and X. J. Lu, “A real-time programmable joint transform correlator,” Opt. Commun., 52, pp. 10-16. 1984.
[4] C. Li, S. Yin and F. T. S. Yu, “Nonzero-order joint transform correlator, “ Opt. Eng., 37, pp. 58-65. 1998.
[5] F. T. S. Yu, G. Lu, M. Lu, and D. Zhao, “Application of position encoding to complex joint transform correlator,” Appl. Opt., 34, pp. 1386-1388. 1995.
[6] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, 220, pp. 671-680. 1983.
[7] C. Chen and J. Fang, “Synthetic aperture radar image recognition by constrained joint transform correlator,” Optik., 112, pp. 125-130. 2001.
[8] Y. Chung, C. Chen, and J. Fang, “Optimal image database slection for the non-zero order joint transform correlator,” Optics in Computing 2002 Taipei Taiwan, pp. 359-361. 2002.
[9] C. Chen, “Minimum-variance nonzero order joint transform correlators, “ Opt. Commun., 182, pp. 91-94. 2000.
[10] C. Chen and J. Fang, “Nonzero order joint transform correlator with an optimized real-valued reference function,” J. Mod. Opt., 48, pp. 1329-1338. 2001.
[11] C. Chen and J. Fang, “Optimal synthesis of a real-valued template for synthetic aperture radar pattern recognition,” Microwave Opt. Technol. Lett., 32, pp. 91-95. 2002.
[12] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equations of state calculations by fast computing machines,” J. Chem. Phys., 21, pp 1087- 1092. 1958.
[13] M. P. Dames, R. J. Dowling, P. McKee, and D. Wood, “Efficient optical elements to generate intensity weighted spot arrays: design and fabrication,” Appl. Opt., 30, pp. 2685-2691. 1991.
[14] M. S. Kim, M. R. Feldman, and C. C. Guest, “Optimum encoring of binary phase-only filters with a simulated annealing algorithm,” Opt. Lett., 14, pp. 545-547. 1989.
[15] G. Yang, “Optimal design of high efficiency optical interconnection system with a simulated annealing algorithm,” Third International Conference on Holographic Systems, Components, Edinburgh, UK, Sept, pp. 45-49. 1991.
[16] G. Stuart and G. Donald, “Stochastic relaxation gibbs distributions, and the buyesian restoration of images,” IEEE Trans. PAMI., PAMI-6, pp. 721-741. 1984.
[17] D. E. Goldgerg, Genetic Algorithm in Search, Optimization and Machine Learning, Addison-Wesley, Reading, Mass., 1987.
[18] M. Taniguchi, K. Matsuoka, and Y. Ichioka, “Computer generated multiple-object discriminant correlation filters: design by simulated annealing,” Appl. Opt., 34, pp. 1379-1385. 1995.
[19] L. Cheng, Y. Guo, and K. Xiao, “Application of simulated annealing algorithm to voltage stability calculation,” Journal of Tsinghua university (Science and Technology), No.1, pp. 4-7. 1999.
[20] B. V. K. Vijaya Kumar and L. Hassebrook, “Performance measures for correlation filters,” Appl. Opt., 29, pp. 2997-3006. 1990.
[21] B. V. K. Vijaya Kumar, W. Shi, and C. Hendrix, “Phase-only filters with maximally sharp correlation peaks,” Opt. Lett., 15, pp. 807-809. 1990.
[22] S. Yin, M. Lu, C. Chen, and F. T. S. Yu, “Design of a bipolar composite filter by a simulated annealing algorithm,” Opt. Lett., 20, pp. 1409-1411. 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔