跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/15 01:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余家杰
研究生(外文):Chia-Chieh Yu
論文名稱:鋁合金輪圈鑄造模擬分析
論文名稱(外文):ANALYSIS OF CASTING PROCESS OF ALUMINUM WHEEL
指導教授:徐業良徐業良引用關係
指導教授(外文):Yeh-Liang Hsu
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:81
中文關鍵詞:電腦輔助工程分析鋁合金輪圈縮孔指標輪圈洩氣率
外文關鍵詞:Aluminum disc wheelsshrinkageleakagecomputer simulationShrinkage Index
相關次數:
  • 被引用被引用:7
  • 點閱點閱:783
  • 評分評分:
  • 下載下載:146
  • 收藏至我的研究室書目清單書目收藏:0
汽車用鋁合金輪圈通常以重力鑄造,鑄造過程中如果冷卻參數和模具初始溫度沒有妥善控制,凝固之後常會造成輪圈內部縮孔,造成輪圈洩氣。
本研究利用電腦輔助分析軟體,模擬在鋁合金輪圈鑄造程序,以穩態收斂之分析結果,依液體陷入(liquid entrapped)現象發展一縮孔指標(Shrinkage Index, SI),並觀察吹水、吹氣、模具初始溫度、以及輪圈幾何造型對於輪圈鑄造縮孔指標之影響,最後並找出SI數值與實際測試中輪圈壓洩測試率之關係。未來應可以此模擬程序與縮孔指標預測輪圈鑄造品質,找出最佳製程參數以期降低輪圈壓洩漏氣率,提高輪圈鑄造品質,降低輪圈生產成本。
Aluminum disc wheels intended for normal use on passenger cars are commonly produced by gravity casting. If the cooling process and initial temperature of mold are not well controlled, shrinkage cavity will occur after solidification, which might cause leakage problems to the disc wheel.
This thesis simulated the casting process by computer simulation, and a Shrinkage Index (SI) is defined using the phenomenon of liquid entrapped. This thesis then discussed the influence of cooling process, initial temperature, and geometry of the wheel on SI after the mold temperature has converged. The relationship between SI and the percentage of wheels that have leakage in real test was discussed. We can use the simulation process and SI to predict the quality of the casting wheel and to find the optimal parameters.
中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅱ
誌謝……………………………………………………………………Ⅲ
目錄……………………………………………………………………Ⅳ
圖目錄…………………………………………………………………Ⅶ
表目錄…………………………………………………………………Ⅹ
第一章 緒論 1
1.1 研究背景與目的 1
(1) 重力鑄造製程 2
(2) 低壓鑄造製程 3
1.2 汽車輪圈鑄造問題相關研究文獻探討 4
(1) 冷卻凝固方式研究 5
(2) 預測鑄件機械性質與縮孔、孔洞研究 6
(3) 電腦凝固分析的研究 7
(4) 結合電腦輔助分析作鑄造過程最佳化設計 8
1.3 研究流程 9
第二章 評估與簡述鑄造分析軟體 11
2.1 鑄造分析軟體的選用評估 11
2.2 ProCAST鑄造軟體使用簡介 12
2.2.1 幾何模型的匯入與網格化 13
2.2.2 分析條件設定 14
(1) 材料物理性質設定 15
(2) 物件之間的表面熱傳係數設定 17
(3) 其他邊界條件設定 18
(4) 設定ProCAST的解題參數 21
2.2.3 求解與輸出結果 24
第三章 鋁合金輪圈鑄造模流分析 29
3.1 建立輪圈網格模型 30
3.1.1以Meshcast建立輪圈網格模型 30
3.1.2 以ANSYS配合轉換程式建立輪圈網格模型 32
3.2 材料性質以及邊界條件的設定 33
3.3 模擬結果分析比對 35
3.4 輪圈鑄造缺陷程度判斷準則 39
第四章 穩態模具溫度狀態下的鋁合金輪圈鑄造模擬分析 45
4.1 模擬重複鑄造過程以達到穩態模具溫度狀態 45
4.2 穩態模具溫度下冷卻條件對凝固比率之影響 49
4.3 穩態模具溫度下吹氣冷卻對縮孔指標之影響 52
4.4 穩態模具溫度下吹水冷卻時間對縮孔指標之影響 54
4.5 穩態模具溫度下初始模具溫度對縮孔指標之影響 56
第五章 鋁合金輪圈外型對鑄造品質影響比對分析 58
5.1 輪圈肋幾何形狀對鑄造品質的影響 58
5.2 輪圈胎環厚度對鑄造品質的影響 61
5.3 SI指標與輪圈洩氣率之關係 63
第六章 結論與未來工作 66
6.1 結論 66
6.2 未來工作 67
參考文獻 68
Bounds, S., Moran, G., Pericleous, K., Cross, M., Croft, T.N., 2000. “Computational model for defect prediction in shape castings based on the interaction of free surface flow, heat transfer, and solidification phenomena,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, v31, n3, p515-527
Caton, M.J., Jones, J.W., Allison, J.E., 2001. “The influence of heat treatment and solidification time on the behavior of small-fatigue-cracks in a cast aluminum alloy,” Materials Science and Engineering A, v314, n1-2, p81-85
Darwish, S.M.H., 1993. “Computer-assisted riser design and placemant,” International Journal of Materials & Product Technology, v12, n1, p43-58
Drezet, J.-M, Rappaz, M., Krahenbuhl, Y., 1996. “Modelling of thermomechanical effects during direct chill casting of AA1201 aluminium alloy,” Materials Science Forum, v217-222, pt1
Gandin, Ch.-A, Brechet, Y., Rappaz, M., Canova, G.., Ashby, M., Shercliff, H., 2002. “Modelling of solidification and heat treatment for the prediction of yield stress of cast alloys,” Acta Materialia, v50, n5, p901-927
Gardiner, R.W., Goodwin, P.S., Dodd, S.B., Viney, B.W., 1996. “Non-equilibrium synthesis of new materials,” Advanced Performance Materials, v3, n3-4, p343-364
Gwyn, Michael A., 1998. “Cost-effective casting design: what every foundryman and designer should know,” Modern Casting, v88, n6, p47-51
Jung Wook Cho, Shibata, H., 2001. “Effect of solidification of mold fluxes on the heat transfer in casting mold,” Journal of Non-Crystalline Solids, v282, n1
Kreziak, G.., Rigaut, C., Santarini, M., 1993. “Low pressure permanent mould process simulation of a thin wall aluminum casting,” Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, v A173, n1-2
Midea, Anthony, Nariman, Rafael, Yancey, Bob, Faivre, Tony, 2000. “Using Computer Modeling to Optimize Casting Processes” Modern Casting, v90, n5, 4pp
Sabau, A.S., Viswanathan, S., 2002. “Microporosity prediction in aluminum alloy castings,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, v33, n2, p243-255
Schneider, Mark C.,Andersen, Soeren, 2000. “Use simulation to analyze macrosegregation, hot tears, heat treatment in steel castings,” Modern Casting, v90,n5, 5pp
Seetharamu, K.N., Paragasam, R., Quadir, G.A., Zainal, Z.A., Prasad, B.S., Sundararajan, T., 2001. “Finite element modeling of solidification phenomena,” Sadhana-Academy Proceedings in Engineering Sciences, v26, n1-2, p103-120
Shenefelt, Jeffrey R., Luck, Rogelio, Berry, John T., Taylor, Robert P., 1999. “Solidification modeling and porosity control in aluminum alloy castings,” Manufacturing Science and Engineering, Nov14-Nov19, Nashville, TN, USA, p507-511
Spittle, J.A., Brown, S.G..R., Wishart, H., 1999. “Experimental and computational evaluation of the influence of permanent mould design on solidification of A17SiMg casting,” Light Metals: Proceedings of Sessions, TMS Annual Meeting, Proceedings of the 1999 128th TMS annual Meeting ‘Light Metals 1999’, Feb 28-Mar 4, San Diego, CA, USA, p951-958
Tiwari, M.K., Roy, D., 2002. “Minimization of internal shrinkage in castings using synthesis of neural networks,” International Journal of Smart Engineering System Design, v4, n3, p205-214.
Viets, Roman, Breuer, Markus, Haferkamp, Heinz, Kruessel, Thomas, Niemeyer, Matthias, 1999. “Solidification process and infrared image characteristics of permanent mold castings,” Proceedings of SPIE — The International Society for Optical Engineering, v3700, Proceedings of the1999 Thermosense XXI, Apr 6-Apr 8 1999, Orlando, FL, USA, p132-140
Wright, T.C., Campbell, John, 1998. “Enhancing aluminum casting solidification via cooling fins,” Modern Casting, v88, n11, p48-50
Zabaras, Nicholas, Nguyen, T. Hung, 1995. “Control of the freezing interface morphology in solidification processes in the presence of natural convection,” International Journal for Numerical Methods in Engineering, v38, n9, p1555-1578
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top