(3.238.249.17) 您好!臺灣時間:2021/04/12 11:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊宏壬
研究生(外文):Hung-Jen Yang
論文名稱:渦輪引擎穿音速壓縮器轉子紊性流場之數值模擬
指導教授:曾培元
指導教授(外文):Pei-Yuan Tzeng
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:兵器系統工程研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:75
中文關鍵詞:穿音速風扇軸流壓縮器三維流場計算
外文關鍵詞:Transonic fanAxial compressor3-D flow computation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:117
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
穿音速軸流式壓縮器內流動現象非常複雜,舉凡穿音速流、紊流、二次流、間隙流及各級間流場的干擾現象等,加上渦輪引擎用壓縮器葉片外形複雜,具高度扭曲、高寬比大、厚度薄等特性,需使用三維的數值模擬方法才得以掌握整體流場的變化。研究是採用CFX公司的TurboGrid及TASCflow商用套裝軟體建構三維的O-H網格,並以控制體積有限元素法為基礎求解Reynolds-averaged Navier-Stokes方程式。
研究過程中,嘗試用不同的網格數量及方法模擬壓縮器流場,並比對美國太空總署(NASA)Lewis Research Center的Fan Rotor-67測試報告,以尋找出適合的紊流模式。結果顯示,使用RNG 的紊流模式,與實驗比對較為準確。計算出來的流場中可發現相對馬赫數等位線分布、震波生成的位置及二次流的產生等現象,皆大致符合實驗結果與氣動力特性。然後再模擬一小型的一級穿音速軸流式壓縮器流場,探討其變化及特性。
The flow field within the blade rows of a multistage axial compressor is extremely complex. This includes transonic flows, turbulence, secondary flows, tip clearance flows, inter-blade row interference, etc. The blade shape in transonic axial compressor is complex too, including high twist, high aspect ratio, thinner thickness, etc. Hence, the fully three-dimensional approach is the only plausible way to numerically investigate the flow variation in compressor field.
Various computer algorithms and CFD codes are being proposed to satisfy this need, TurboGrid in constructed O-H grid system and TASCflow in solving the Reynolds-averaged Navier-Stokes equations by control volume finite element method, are used in this study. The validation of CFD codes is conducted by comparing the predictions with a benchmark database acquired experimentally on a FAN ROTOR-67 NASA transonic fan. Then, the simulation and analysis of one stage transonic axial compressor is performed.
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 vii
圖目錄 viii
符號說明 xi
1. 前言 1
2. 文獻回顧 6
3. 研究方法 13
3.1 統御方程式 13
3.2 紊流模型介紹 15
3.2.1 紊流模型 15
3.2.2 RNG 紊流模型 16
3.2.3 紊流模型 17
3.3 數值方法 18
3.3.1 通量元素 19
3.3.2 擴散項與壓力項的處理 23
3.3.3 數值通量的計算 24
3.3.4 壓力與速度的耦合 26
3.3.5 矩陣的求解 27
4. 物理模型與邊界條件 29
4.1 物理模型 29
4.2 網格產生 29
4.3 動態網格 31
4.4 邊界條件 33
5. 結果驗證與討論 35
5.1 網格驗證 35
5.2 數值比對 40
5.3 流場比對 43
5.4 流場分析 48
5.5 一級壓縮器流場模擬結果與分析 50
6. 結論與建議 50
6.1 結論 50
6.2 研究建議與方向 50
6.3未來展望 50
參考文獻 50
自傳…….75
[1]Ainley, D. G. and Mathieson, G. C. R., “A Method of Performance Estimation for Axial-Flow Turbine,” ARC R&M 2974, 1951.
[2]Treager, I. E., Aircraft Gas Turbine Engine Technology, 3rd edition, 1997.
[3]Gallimore, S. J., Axial flow compressor design, Developments in Turbo- machinery Design, 1999.
[4]Hirsch, C., “Fluid Flow Phenomena,” European Journal of Mechanics-B/Fluids, Vol. 20, Issue: 3, May - June, 2001.
[5]Moore, J. and Moore, J. E., “Performance Evaluation of Linear Turbine Cascade Using Three-Dimensional Viscous Flow Calculations,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 17, No. 1, pp.969-975, 1985.
[6]Dawes, W. N., “Development of a Three-Dimensional Navier-Stokes Solver for Application to All Types of Turbomachinery,” ASME Paper, No. 86-GT-70, 1986.
[7]Denton, J. D., “The Use of a Distributed Body Force to Simulate Viscous Flow in Three-Dimensional Flow Calculations,” ASME Paper, No. 86-GT-144, 1986.
[8]Rai, M., “Navier-Stokes Simulation of Rotor Stator Interaction Using Patched and Overlaid Grids,” AIAA Paper, 85-1519, 1985.
[9]Davis, R. L., Hobbs, D. E., and Weingold, H. D., “Prediction of Compressor Cascade Performance Using a Navier-Stokes Technique,” ASME Journal of Turbomachinery ,Vol. 110, pp.520-531, 1988.
[10]Giles, M. B., “Stator/Rotor Interaction in a Transonic Turbine,” AIAA Paper, No. 88-3093, 1988.
[11]Rao, K. and Delaney, R., “Investigation of Unsteady Flow through Transonic Turbine Stage,” AIAA Paper, No. 90-2408, 1990.
[12]Adamczyk, J. J., “Model Equation for Simulating Flows in Multistage Turbo machinery,” ASME Paper, No. 85-GT-226, 1985.
[13]Arts, T., “Calculation of the Three-Dimensional, Steady, Inviscid Flow in a Transonic Axial Turbine Stage,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 107, pp.286-292, 1985.
[14]Ni, R. H., “Prediction of Three-Dimensional Multi-stage Turbine Flow Field Using a Multiple Grid Euler Solver,” AIAA Paper, No. 89-0203, 1989.
[15]Chima, R. V. and Strazisar, A. J., “Comparison of Two- and Three- Dimensional Flow Computations with Laser Anemometer Measurements in a Transonic Compressor Rotor,” NASA Technical Paper 1931, 1982.
[16]Chima, R. V. and Yokota, J. W., “Numerical Analysis of Three-Dimensional Viscous Internal Flows,” AIAA Journal, Vol. 28, No. 5, pp.798-806, 1990.
[17]Hah, C. and Wennerstrom, A. J., “Three-Dimensional Flowfields Inside a Transonic Compressor With Swept Blades,” ASME Journal of Turbomachinery, Vol. 113, pp. 241-251, 1991.
[18]Mulac, R. A. and Adamczyk, J. J., “The Numerical Simulation of a High-Speed Axial Flow Compressor,” ASME Journal of Turbomachinery, Vol. 114, pp. 517-527, 1992.
[19]Law, C. H. and Wadia, A. R., “Low Aspect Ratio Transonic Rotors: Part 1 — Baseline Design and Performance,” ASME Journal of Turbomachinery, Vol. 115, pp. 218-225, 1993.
[20]Copenhaver, W. W., Hah, C., and Puterbaugh, S. L., “Three-Dimensional Flow Phenomena in a Transonic, High-Throughflow, Axial-Flow Compressor Stage,” ASME Journal of Turbomachinery, Vol. 115, pp. 240-248, 1993.
[21]Howard, M. A. and Gallimore, S. J., “Viscous Throughflow Modeling for Multistage Compressor Design,” ASME Journal of Turbomachinery, Vol. 115, pp. 296-304, 1993.
[22]Katoh, Y., Kashiwabara, Y., Ishii, H., Tsuda, Y., and Yanagida, M., “Development of a Transonic Front Stage of an Axial Flow Compressor for Industrial Gas Turbines,” ASME Journal of Turbomachinery, Vol. 116, pp. 605-611, 1994.
[23]Sanger, N. L., “Design of a Low Aspect Ratio Transonic Compressor Stage Using CFD Techniques,"ASME Journal of Turbomachinery, Vol. 118, pp. 479-491, 1996.
[24]Adamczyk, J. J., Hathaway, M. D., Shabbir, A., and Wellborn, S. R., “Numerical Simulation of Multi-Stage Turbomachinery Flows,” RTO AVT Symposium on “Design Principles and Methods for Aircraft Gas Turbine Engines”, held in Toulouse, France, 11-15 May 1998.
[25]Nozaki, O., Kikuchi, K., Nishizawa, T., Matsuo, Y., Ooba, Y., and Kodama, H., “Unsteady Three-Dimensional Viscous Flow Compurtations of Multiple-Blade-Row Interactions,” AIAA Paper, No. 99-34033, 1999.
[26]Li, Y. G., Tourlidakis, A., and Eld, R. L., “Three-Dimensional Viscous Flow Analysis of Multistage Axial Flow Compressors,” AIAA Paper, No. 99-34065, 1999.
[27]Blaha, C., Kablitz, S., Hennecke, D. K., Schmidt-Eisenlohr, U., Pirker, K., and Haselhoff, S., “Numerical Investigation of The Flow in an Aft-swept Transonic Compressor Rotor,” Proceeding of ASME TURBOEXPO 2000 May 8-11, Munich, Germany, 2000-GT-0490, 2000.
[28]Gerolymos, G. A., Neubauer, J., Sharma, V. C., and Vallet, I., “Improved Prediction of Turbomachinery Flows Using Near-Wall Reynolds-Stress Model,” Transactions of the ASME, Vol. 124, pp.86-99, Jan 2002.
[29]Launder, B. E. and Sharma, B. I., “Application of the Energy Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc,” Letter in Heat and Mass Transfer, Vol. 1, No.2, pp.131-138, 1974.
[30]Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., and Speziale, C.G., “Development of Turbulence Models for Shear Flow by a Double Expansion Technique,” Physics Fluids, Part A, Vol.4, No.7, pp.1510-1520, 1992.
[31]Wilcox, D. C., “Comparison of Two-Equation Turbulence Models for Boundary Layers with Pressure Gradient,” AIAA Journal, Vol.31, No.8, pp.1414-1421, 1993.
[32]Baliga, B. R., and Patankar, S. V., “A Control Volume Finite-Element Method for Two-Dimensional Fluid Flow and Heat Transfer,” Numerical Heat Transfer, Vol. 6, pp. 245-261, 1983.
[33]CFX-TASCflow Manual, Version 1.6.0, September 2002.
[34]Van Doormaal, J. P., Turan, A., and Raithby, G. D., “Evaluation of New Techniques for the Calculation of Internal Recirculating Flows,” AIAA Paper, 87-0059, 1987.
[35]Raithby, G. D., “Skewed Upstream Differencing Schemes for Problems Involving Fluid Flow,” Comp. Meth. Appl. Mech. Eng., Vol.9, No. 2, pp.153-164, 1976.
[36]Rhie, C. M., and Chow, W. L., “A Numerical Study of the Turbulent Flow Past an Isolated Airfoil with Trailing Edge Separation,” AIAA paper, 82-0998, 1982.
[37]Prakash, C. and Patankar, S. V., “A Control Volume Based Finite Element Method for Solving the Navier-Stokes Equations Using Equal Order Velocity-Pressure Interpolation,” Numerical Heat Transfer, Vol.8, pp.259-280, 1985.
[38]Strazisar, A.J., Wod, J.R., Hathaway, M.D., and Suder, K. L., “Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor,” NASA Technical paper 2879, 1989.
[39]Rai, M., and Chakravarthy, S., “An Implicit From for the Osher Upwind Scheme,” AIAA Journal, 24,735-743, 1986.
[40]Denton, J. D., “Extension of finite volume time marching method to three dimensions,” VKI Lecture Series 1979-7, 1979.
[41]Fritsch, G., and Giles, M. B., “An asymptotic analysis of mixing loss,” ASME paper 93-GT-345,1993.
[42]41, J. D., “Calculation of 3D viscous flow through multistage turbo- machines,” Trans. ASME, J. Turbomechinery, 1992, 114(1).
[43]Adamczyk, J. J., “Model equation for simulating flows in multistage turbo- machinery,” ASME paper 85-GT-226, 1985.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔