(3.238.174.50) 您好!臺灣時間:2021/04/16 15:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林千景
研究生(外文):CHIEN-CHING LIN
論文名稱:旋翼機主旋翼流場模擬
指導教授:曾培元劉中和劉中和引用關係
指導教授(外文):PEI-YUAN TZENGCHUNG-HO LIU
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:兵器系統工程研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:60
中文關鍵詞:直昇機滑動格點變形網格地面效應
外文關鍵詞:helicopternaca0012UH!Hcfdrc 2003ground effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
旋翼機經歷半個多世紀的發展,廣泛應用在飛行器,主旋翼葉片是提供旋翼機升力的主要來源,旋翼機在飛行性能表現上,主旋翼旋轉產生的流場一直是直昇機研究發展最複雜也是最重要的部分。
使用計算流體力學理論與實驗是探究滯空條件下旋轉旋翼流場的兩項工具。然而現今有越來越多運用可靠的計算流體力學工具,作為旋翼動態模擬設計工具,以取代成本高及耗時的實驗研究,此外,先進的數值計算方法也提供主旋翼運動模組精確有效的計算。
模擬滯空條件下旋轉旋翼流場,考慮旋翼與流場的相對運動,一個簡單而有效的方式是將流場分為兩個區間:一個隨著時間轉動包含主旋翼的動態網格,另一個區塊空間為包圍動態網格的靜態網格空間。在二區間的交界面會產生重疊或滑動,而流場計算是否正確,將受此交界區域的處理方式所決定。
本文數值計算採用CFDRC-ACE軟體,並建構O型多重區塊圓柱形結構網格構型,驗證CFDRC程式計算正確性,並建立三維主旋翼葉片NACA-0012模組,與Caradonna, F.X., and Tung, C.,(1981)實驗比較得到吻合結果,進而分析三維旋轉葉片於滯空條件下,攻角變化對於流場變化的影響。
滯空條件下三維旋翼旋轉的研究工作,探究旋轉旋翼下方流場分佈與地面效應之產生,了解並避免飛行器於振動與非穩定狀態下飛行對飛安更是重要。
Helicopters are developed for many decades, and have been generally used in aircrafts. The main lift source of helicopters is produced from rotor wings. The flow field below the main rotor is much complex and important research area.
Use the method to simulate the understanding of the rotor flow field in hover is Computational Fluid Dynamics (CFD) or experiment. There is now an increasing interest in using CFD as a reliable design tool in rotor wings, because of the increase in costs and time consuming associated with experimental studies. In addition, the recent advances in computational techniques have motivated many efforts in main rotor modeling.
For the simulation flow field of the rotor in hover, between the rotor set and the flow field looks as a relative motion, a simple and good way to divided flow field to two reflected zones: One is including the rotor set with time depending, another is a fixed structured grid zones around the above. Two coined or sliding mesh reflected interfaces are generated. It will find out the flow field computation result is correct or not.
A numerical study of flow field modeling using CFDRC-ACE code as O-type cylinder multi-block structure framework in main rotor has been conducted. First, to verify the accuracy of CFDRC code, a rotor model of three-dimension NACA-0012 rotor model set has been developed. The results are compared with experiments Caradonne, F. X. (1981), close agreement is found. To build a model of 3-D rotor set in hover to predict the influence of attack angle change in flow field.
Extensive work in three-dimensional flow field as rotating rotors in hover, to realize the flow distribution below the rotor set and ground effect generated in flow field. It would be kept off the vibration and unsteady situations in flight safety.
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 viii
圖目錄 ix
符號說明 xii
1. 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機 3
2. 物理模式 5
2.1 統御方程式 5
2.2 邊界與初使條件 6
2.3 網格構型 8
2.4 物理模式選用 8
2.4.1 流體模式(Flow Module) 8
2.4.2 紊流模式(Turbulence Module) 9
2.4.3 變形網格模式(Deformation Grid-Based) 10
3. 數值方法 12
3.1 有限體積法 12
3.1.1 對流項的離散處理 13
3.1.2 擴散項的處理 13
3.1.3 源項的線性化 14
3.2 邊界處理條件 15
3.2.1 固定網格邊界條件 15
3.2.2 對應面邊界條件 16
3.3 演算法則SIMPLEC 17
3.3.1 法則SIMPLE 18
3.3.2 法則SIMPLEC 18
3.3.3 求解步驟 20
3.3.4 收斂標準 20
4. 結果與討論 26
4.1 構型選擇 26
4.2 模擬條件 26
4.3 旋翼流場問題測試 27
4.3.1 滯空條件下,對稱型翼型之三維旋轉旋翼流場 28
4.3.2 滯空條件下,攻角改變之三維旋轉旋翼流場 28
4.3.3 參考高度改變之地面效應流場 29
5. 結論與建議 53
5.1 結論 53
5.2 未來展望 54
5.3 研究建議與方向 55
參考文獻 56
自傳 60
[1]Conlisk, A. T.,“Mordern Helcopter Rotor Aerodynamics,”Progress in Aerospace Sciences, 37, pp. 419-476, 2001.
[2]Hanson, D. B.,“Unsteady Airloading Panel Method for Prop-Fans,”AIAA-90-3914, 1990.
[3]Chen, S. H. and Williams, M. H.,“Panel Method for Counter-Rotating Propfans,”Journal of Propulsion, Vol.7, No.4, pp. 593-601, 1991.
[4]Whitfield, D. L., Swafford, T. W., Janus, J. M., Mulac, R. A., and Belk, D. M.,“Three-Dimensional Unsteady Euler Solutions for Propfans and Counter-Rotating Propfans in Transonic Flow,”AIAA-87-1197, 1987.
[5]Kobayakawa, M. and Hatano, I.,“Flow Field Around a Propeller by Navier-Stokes Equation Analysis,”AIAA-88-3150,1988.
[6]Agarwal, R. K. and Deese, J. E.,“Euler Calculations for Flow-field of a Helicopter Rotor in Hover,”Journal of aircraft, Vol.24, No.4, pp. 231-238, 1987
[7]Srinivas, G. R., Baeder, J.D., Obayashi, S., and McCroskey, W.J.,“Flowfield of a Lifting Rotor in Hover Navier-Stokes Simulation,”AIAA Journal, Vol.30, No.10, pp. 2371-2378, 1992.
[8]Srinvasan, G. R. and Baeder, J. D.,“TURNS:A Free Wake Euler / Navier-Storkes Numerical Method for Helicopter Rotors,”AIAA Journal, Vol.31, No.5, pp. 959-962, 1993.
[9]Chen, C. L. and McCrokey, W. J.,“Numerical Solutions of Forward Flight Rotors Flow Using an Uping Method,”AIAA 89-1846, 1989.
[10]Agarwal, R. K. and Deese, J. E.,“A Euler Slover for Calculating the Flowfield of a Helicopter Rotor in Hover and Forward Flight,”AIAA paper 87-1427.
[11]Meakin, R.,“Moving Body Overset Grid Methods for Complete Aircraft Tiltrotor Simulations,”AIAA paper 93-3350,1993
[12]Ahmad, J. and Earl P. N. Duque,“Helicopter Rotor Blade Computation in Unsteady Flows Using Moving Overset Grid,”Journal of Aircraft, Vol.33, pp. 54-66, 1996.
[13]潘大知,“螺槳與飛機整合氣動力分析”,國防科技發展推行委員會學術合作協調小組,NSC88-2623-D006-008,1999。
[14]CFD-ACE(U) User Manual, Version 2003, CFD Research Corporation, 2003.
[15]CFD-ACE(U) Module Manual, Version 2003, CFD Research Corporation, 2003.
[16]Rhie, C. M. and Chow, W. L.,“Numerical study of the turbulent flow past an airfoil with trailing edge separation,”AIAA Journal, Vol. 21, No. 11, pp. 1525-1532, 1983.
[17]Gaskell, P. H. and Lau, A. K. C.,“Curvature-Compensated Connective Transport: SMART, a New Boundedness Preserving Transport Algorithm,”International Journal for Numerical Methods in Fluids, Vol. 8, pp. 617-641, 1988.
[18]Peric, M., Kessler, R., and Scheuerer, G.,“Comparison of finit-volume numerical methods with staggered and collocated grids,”Computers and Fluids, Vol. 16, No. 4, pp. 389-403, 1988.
[19]Van doormaal, J. P., and Raithby., G. D.,“Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows,”Numerical Heat Transfer, 7, pp. 147-163, 1984.
[20]Saad, Y.,“Iterative Methods for Sparse Linear Systems,”PWS, Boston , 1996.
[21]Baliga, B. R. and Prtankar, S. V.,“A new finite element formulation for convection diffusion problems,”Numerical Heat Transfer, pp. 393-409, 1980.
[22]Raghav Mahalinggam, Oliver Wong, and Narayanan Komerath,“Experiment on the Origin of Tip-Vortices,”AIAA 2000-0278, 1999.
[23]Avva, R. K. and Sundaram, S.,“Numerical Simulation of Surface Pressure Fluctuations in Complex Geometries,”Navy Contract N000114-98-CO416, 1995.
[24]Chen, H. C. and Patel, V. C.,“Near-Wall Turbulence Models for Complex Flows Including Separation,”AIAA Journal, 1988.
[25]Chien K. Y.,“Prediction of Channel and Boundary-Layer Flows with a Low Reynolds Number Turbulence Model,”AIAA Journal,1982.
[26]Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., and Speziale, C. G.,“Development of Turbulent Models for Shear Flows by a Double Expansion tecniqe,”Physics of Fluids, Vol.4, pp. 1510-1520, 1992.
[27]Launder, B. E. and Spaulding, D. B.,“The Numerical Computation of Turbulent Flows,”Comp. Methods for Appl. Mech., pp.269-289, 1974.
[28]Yakhot, V. and Orszag, S. A.,“Renormalization Group Analysis of Turbulence,”J. Sci. Comput, Vol.1.1, pp. 3-51, 1986.
[29]Baliga, B. R. and Patankar, S. V.,“A Control Volume finite element method for two dimensional fluid flow and heat transfer,”Numerical Heat Transfer, Vol.6, pp. 245-261, 1983.
[30]Baliga, B. R. and Patankar, T. T.,“Soultions of some two-dimensional incompressible fluid flow and heat transfer Problem, using a Control-Volume finite element method,”Numerical Heat Transfer, Vol.6, pp. 263-282, 1983.
[31]Patankar, S. V., Numerical Heat Transfer and Fluid Flow, McGraw-Hill, NewYork, 1980.
[32]Doormaal, V. J. and Raithby, G. D.,“Enhancements of SIMPLE Method for Predicting Incompressible Fluid Flow,”Numerical Heat Transfer, Vol. 7, pp. 147-163, 1984.
[33]Jang, D. S., Jetli, R., and Acharya, S.,“Comparison of the PISO, SIMPLER and SIMPLEC Algorithms for the Treatement of the Pressure-Velocity Coupling n Steady Flow Problem, ”Numerical Heat Transfer, Vol.10, pp. 209-228, 1986.
[34]Caradoona, F. X. and Tung, C.,“Experimental and Analytical Studies of a Model Helicopter Rotor in Hover, ”NASA TM 81232, 1981.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔