(34.204.185.54) 您好!臺灣時間:2021/04/16 20:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:詹健聖
研究生(外文):Jan Jian-Sheng
論文名稱:微電鑄參數於U型陣列模仁之數值研究
指導教授:張百禹張百禹引用關係
指導教授(外文):Chang Pai-Yu
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:造船工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
中文關鍵詞:微電鑄U型陣列模仁電鍍液電流密度剪應力
外文關鍵詞:micro electroformingU-type matrix mould insertElectrolyteDensity of currentShear stress
相關次數:
  • 被引用被引用:2
  • 點閱點閱:255
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
以微電鑄方式製作單孔及U型陣列模仁,其成形之製品可廣泛運用於需要批造技術之生物晶片,微流道層析與燃料電池之雙極板等。本文之探討針對0.6 mol/liter CuSO4 與 1.85 mol/liter H2SO4 之電鍍液的組成於U型陣列模仁之微電鑄物理行為,以電鍍液流動、電流密度、質量傳遞和陰極表面的反應等電鍍行為之數學模式,藉由數值模擬達成對陰極工件面之內部流場、剪應力分佈、濃度分佈、電壓分佈及電流密度分佈之分析模式與分析能力,其結果可作為製作高硬度、低殘留應力、複製性良好、表面精度高微結構之參考。
研究重點有三部份:第一部份以U型單孔模仁為主內部流場、剪應力分佈、濃度分佈、電壓分佈及電流密度。改變不同孔洞寬度時及不同的Pe值,當孔洞寬度小時擴散效應大於對流效應;孔洞寬度大時對流效應大於擴散效應,且其計算結果與Kondo的數值擁有良好一致性。第二部份固定U型陣列模仁外型,探討微電鑄參數效應,改變陽極表面濃度、平均電壓與Pe。第三部份固定電鍍液之外在環境各別影響參數及電鍍液種類,改變U型陣列模仁孔洞之深寬比、孔洞排列間距與陰極面旋轉速度等,以統計分析規劃法整理各項參數之最適值,獲得較佳之濃度分佈、剪應力分佈及電流密度分佈。
關鍵詞:微電鑄,U型陣列模仁,電鍍液,電流密度,剪應力
The single hole and a mould of U-type array are mabe by the micro-electroforming . It’s products making shape can be applied extensively to need for the technology of batch-making biochip, analysis of micro-flows and fuel cell with a pair of the polar plate etc. The discussion of this article alleges that the physics behavior of micro-electroforming for a mould of the U-type array which compose of electrolyte (0.6 mol/liter CuSO4 and 1.85 mol/liter H2SO4) .It includes electrolyte fluid flow, mass transfer and electrolyte reaction on the anode-cathode of electrolyte. The mimic numerical method method can encompass to predict the analytic mould in the cathode-field for internal stress facility, shear and concentration distribution, and current density distribution. The result refers to the higher-surface accurate microstructure of higher hardness, lower residual stress and well-duplicated.
Studying has three parts especially: The first part flows for main inside with the form single hole mould insert of the U-type field, shearing stress are distributed. The concentration distributing , voltage distributing and density of current. And different Pe value while changing different width of hole .As the width of the hole small convection effect the effect than the diffusion effect small. The convection effect is than the diffusion effect when the hole is great in width. And it is result of calculation and number value of Kondo have good consistency. The second part of regular U-type array mould insert appearances. Probe into the micro-electroforming and the parameter effect, change the concentration of anode surface, bulk voltage and Pe value. The third part: surface for the cathode’s geometry surface consisted different aspect ratio, distance between the mould cavities, distance between the resist mold and the extension-surface, and different cavities such as a U-type, a trapezoid or a circle cavity and rotation of cathode disk. To statistic and arrange, then can obtain optimum parameters, to match uniform internal stress distribution and current density distribution in the micro-electroforming process.
Keywords:micro electroforming, U-type matrix mould insert, electrolyte, density of current, shear stress.
誌謝........................................................ii
摘要........................................................iii
ABSTRACT....................................................iv
目錄........................................................vi
表錄........................................................ix
圖錄........................................................x
符號說明....................................................xvi
1. 續論.....................................................1
1.1 研究動機................................................1
1.2 LIGA製程技術............................................5
1.2.1 LIGA技術發展及背景....................................5
1.2.2 LIGA製程..............................................6
1.3 微電鑄文獻回顧 ..........................................9
1.4 U型陣列模仁之應用及特質 .................................11
1.5 研究目的及內容 ..........................................12
2. 微電鑄理論分析 ..........................................13
2.1 電鑄原理................................................14
2.2 微電鑄影響之變因........................................15
2.3 流體力學之理論觀點......................................16
2.4 電流密度效應............................................18
2.5 外形結構效應............................................19
3. U型單孔模仁..............................................21
3.1 基本假設................................................21
3.2 統御方程式..............................................21
3.3 參數的計算..............................................24
3.4 邊界條件................................................26
3.5 數值方法................................................29
3.6 U型單孔模仁之參數建立及數值分析 .......................29
3.7 格點測試................................................32
3.8 Pe效應..................................................35
3.9 孔洞寬度效應............................................36
3.10 驗證與比對.............................................42
3.11 孔洞之剪應力...........................................46
3.12 孔洞之電流密度.........................................49
4. U型陣列模仁之參數效應....................................51
4.1 U型陣列模仁參數效應之建立及數值分析.....................51
4.2 U型陣列模仁微電鑄參數統計分析規劃.......................54
4.3濃度效應.................................................55
4.4平均電壓效應.............................................61
4.5 Pe效應..................................................67
5. U型陣列模仁之外形效應....................................76
5.1 U型陣列模仁外形效應之參數建立及數值分析.................76
5.2孔洞間距效應.............................................78
5.3孔洞寬度效應.............................................86
5.4陰極面旋轉效應...........................................96
5.5影響參數效應之整理......................................106
6. 結論與建議..............................................107
6.1建議與未來展望 .........................................110
參考文獻...................................................111
自傳.......................................................115
[1] 黃瑞星,“微系統技術的挑戰”,科儀新知,第十八卷,第三期,第21-25頁,1996。
[2] 馬遠榮,“奈米科技與工業革命”,科儀新知,第二十三卷,第四期,第85-91頁,2001。
[3] 蔡聖豐、陳來勝,“奈米科技與機械產業”,中國工程師學會會刊,第32-42頁,2003。
[4] 楊啟榮、強啟英、黃奇聲,“微系統LIGA製程之精密電鑄技術”,科儀新知,第二十一卷,第六期,第15~27頁,2000。
[5] 楊啟榮,“微系統LIGA製程之精密電鑄技術”,科儀新知,第二十一卷,第六期,第4-17頁,2000。
[6] 葉翳民、涂肇嘉、簡世森、歐耿良,“奈米轉印微影壓模研製”,第十二屆國防科技學術研討會,桃園縣中正理工學院,第345-354頁,2003。
[7] Rmening, M. Han., Bacher, W., Bley, P., and Mohr, J., “ Molding of Threedimen-sional Microstructures by the LIGA Process,” Porceedings of IEEE Micro Electro Mechanical Systems, pp. 202-207, 1992.
[8] Mebz, W., and Bbacher, W., “ The LIGA Technique-A Novel Concept for Micro-structures and Combination with Si Technologies by Injection Molding,” Proceedings of the IEEE Micro Electromec- hanical Systms , pp.69-73, 1991.
[9] Guckel, H., Skrobis, K. J., Christenson, T. R., Kliein, J., and Han, S., “ Frabrication of Assemolded Micromechanical Components Via Deep X-ray Lithography,”Porceedings of the IEEE Micro Electro Mechanical Systems, pp.74-79, 1991.
[10] 楊啟榮、強玲英、郭文凱、林郁欣、林暉雄、張哲瑋、趙俊傑,“微系統類LIGA製程光刻技術”,科儀新知,第二十二卷,第四期,第33-45頁,2001。
[11] Yang, H., and Kang, S. W., “Improvement of Thickness Uniformity in Nickel Electroforming for the LIGA process,” J. Machine Tools and Manufacture, Vol. 40, pp. 1065-1072, 2000.
[12] Zeller, R. L., and Lsndau, U., “Electrochemically Active Surface Area.Voltammetric Charge Correlation for Ruthenium and Iridium Dioxide Electrodes,” J. Electrochem. Soc., Vol. 138, No. 4, pp. 489-494, 2001.
[13] Chan, K. C., Qu, N. S., and Zhu, D., “Materials Analysis of an Inside-out Tube Inversion Process,” J. of Materials Processing Technology, Vol. 66, No. 1-3, pp. 130-136, 1997.
[14] 陳宏澤,“界面活性劑在金屬脫脂及酸洗方面之應用”,金屬表面技術雜誌,第71期,第113-115頁,1981。
[15] Huang, C. H., “effect of Organic Additives on Electrofomed Nickel Alloys’’, Metal Finishing, 138, 1993.
[16] Lee, S. L., Lee, Y. F., Chang, M. H., and Lin, J. C., “Pulse Plating Effects During Ni-W Electrodeposition,” Corrosion Prevention & Control, pp.71-76, 1999.
[17] Yin, K. M., Jan, S. L., and Lee, C. C., , “Current Pules with Reverse Plating of Nickel-Iron Alloys in a Sulphate Bath,” Surface and Coatings Technology, Vol. 88, pp.219, 1996.
[18] 葉翳民、涂肇嘉、何佩蓉,“脈衝電鑄奈米級鎳鐵合金特性與微結構研究,Journal of Materials Science and Engineering, Vol. 35, No, 2, pp. 121-126, 2003.
[19] Andricacos, P. C., Tabib, J., and Romankiw, L. T., “Stripping Voltammetry of Nickel-Iron Film Electrodepostion on Platinum Using a RRDE,” J. Electrochem. Soc, Vol. 136, pp. 1172, 1989.Thommes, A., Stark, W., Leyendecker, K., and Bacher, W., “LIGA Microstructures from a NiFe-alloy Preparation Electroforming and their Materials,” H. Liebscher and C. Jakob, Editors.
[21] 周婉秋、郭鶴桐、姚素薇,“電沉積鎳-鎢非晶態合金及其耐蝕性”,Materials Protection,第二十九卷,第十一期,第6-8頁,1996。
[22] 吳信田、鄧茂英,“鎳鎢電鍍之研究”,碩士論文,國立清華大學材料科學工程研究所,新竹,第2-8頁,1995。
[23] Yamasaki, T., P, S., Ehrlich, K., and Ogino, Y., “Formation of Amorphous Electrodeposited Ni-W Alloys and Their Nanocrystallization,” Nanostructured Materials, Vol. 10, No. 3, pp. 375-388, 1998.
[24] Gould, R. D., and Lopez, M. G., “Electrical Conductivity and Dynamics of Electroforming in Al-SiOx-Al Thin Film Sandwich Structure,” Thin Solid Films, Vol. 433, pp. 315-320, 2003.
[25] Grimmett, D. L., Schwartz, M., and Nobe, K., “Electrodeposition of Iron-Nickel Alloy,” Plating and Surface Finishing, Soc. 94, pp. 926-936, 1988..
[26] Hessami, S., and Tobias, C. W., “A Mathematical Model for Anomalous Codeposition of Nickel-Iron on Rotation Disk,” J. Electrochem. Soc, Vol. 136, pp. 512-516, 1989.
[27] Anthony, M. P., and Huk, Y. C., “The Current Distribution within Plated Through out Holes,” J. Electrochem. Soc, Vol.136, pp.405, 1989.
[28] Kondo, K., and Fukui, K., “Shape Evolution of Electrodeposited Bumps with Deep Cavity,” J. Electrochem. Soc, Vol. 145, pp. 3007-3010, 1998.
[29] Georgiadou, M., “Modeling Current Density Distribution Electrochemical Systems,” Electrochimica Acta, Vol. 48, pp.4089-4095, 2003.
[30] 蔡宗勳、楊錫杭、簡瑞與,“Computation of Surface Concentration at High Aspect Ratio Electrodeposition Under Various Stagnant Film Thickness,” The 10th National Computational Fluid Dynamics Conference, I7, Hua-Lien, August, 2003.
[31] Landolt, D., “Electrodeposition Science and Technology in the Last Quarter of the Twentieth Century,’’ Journal of The Electrochemical Society, 149(3) S9-S20, 2002.
[32] 周榮源,“微射出成型技術簡介”,科儀新知,第二十三卷,第四期,第93-99頁,2001。
[33] 周正中、白果能,“微陣列晶片簡介及其應用”,科儀新知,第二十三卷,第五期,第5-13頁,2002。
[34] 曾繁根、黃海美、林世章、黃朝裕、錢景常,“沾印式蛋白質微陣列晶片研製”,科儀新知,第二十三卷,第五期,第14-23頁,2002。
[35] 吳溪煌、田福助,電化學-理論與應用,高立圖書有限公司,台北,第8-13頁,1990。
[36] 精密儀器發展中心,微機電系統技術與應用,第225-246頁,2003。
[37] Romankiw, L. T., “A path: from electroplating through lithographic masks in electronics to LIGA in MEMS,” Electrochimica Acta, pp. 2985-3005, 1996.
[38] Richard, Alkire., and Hariklia, Deligianni., “The Role of Transport on Anisotropic Electrochemical Pattrn Etching,” J. Electrochem. Soc., pp. 1093-1100, 1988.
[39] 蘇癸陽、張良謙,實用電鍍理論與實際,復文書局,台南,第97-146頁,1999。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. [34] 曾繁根、黃海美、林世章、黃朝裕、錢景常,“沾印式蛋白質微陣列晶片研製”,科儀新知,第二十三卷,第五期,第14-23頁,2002。
2. [33] 周正中、白果能,“微陣列晶片簡介及其應用”,科儀新知,第二十三卷,第五期,第5-13頁,2002。
3. [32] 周榮源,“微射出成型技術簡介”,科儀新知,第二十三卷,第四期,第93-99頁,2001。
4. [18] 葉翳民、涂肇嘉、何佩蓉,“脈衝電鑄奈米級鎳鐵合金特性與微結構研究,Journal of Materials Science and Engineering, Vol. 35, No, 2, pp. 121-126, 2003.
5. [14] 陳宏澤,“界面活性劑在金屬脫脂及酸洗方面之應用”,金屬表面技術雜誌,第71期,第113-115頁,1981。
6. [10] 楊啟榮、強玲英、郭文凱、林郁欣、林暉雄、張哲瑋、趙俊傑,“微系統類LIGA製程光刻技術”,科儀新知,第二十二卷,第四期,第33-45頁,2001。
7. [5] 楊啟榮,“微系統LIGA製程之精密電鑄技術”,科儀新知,第二十一卷,第六期,第4-17頁,2000。
8. [4] 楊啟榮、強啟英、黃奇聲,“微系統LIGA製程之精密電鑄技術”,科儀新知,第二十一卷,第六期,第15~27頁,2000。
9. [3] 蔡聖豐、陳來勝,“奈米科技與機械產業”,中國工程師學會會刊,第32-42頁,2003。
10. [1] 黃瑞星,“微系統技術的挑戰”,科儀新知,第十八卷,第三期,第21-25頁,1996。
11. [2] 馬遠榮,“奈米科技與工業革命”,科儀新知,第二十三卷,第四期,第85-91頁,2001。
 
系統版面圖檔 系統版面圖檔